Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,14 @@
|
|
1 |
-
|
2 |
-
from datasets import load_dataset
|
3 |
-
from transformers import TrainingArguments, Trainer
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
streamlit_docs_dataset = load_dataset("sai-lohith/streamlit_docs")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
# Define training arguments
|
18 |
-
training_args = TrainingArguments(
|
19 |
-
per_device_train_batch_size=2,
|
20 |
-
num_train_epochs=3,
|
21 |
-
logging_dir='./logs',
|
22 |
-
output_dir='./output',
|
23 |
-
overwrite_output_dir=True,
|
24 |
-
report_to="none" # Disable logging to avoid cluttering output
|
25 |
-
)
|
26 |
-
|
27 |
-
# Define training function
|
28 |
-
def tokenize_function(examples):
|
29 |
-
return tokenizer(examples["text"])
|
30 |
-
|
31 |
-
def group_texts(examples):
|
32 |
-
# Concatenate all texts.
|
33 |
-
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
34 |
-
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
35 |
-
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can customize this part to your needs.
|
36 |
-
total_length = (total_length // tokenizer.max_len) * tokenizer.max_len
|
37 |
-
# Split by chunks of max_len.
|
38 |
-
result = {
|
39 |
-
k: [t[i : i + tokenizer.max_len] for i in range(0, total_length, tokenizer.max_len)]
|
40 |
-
for k, t in concatenated_examples.items()
|
41 |
-
}
|
42 |
-
return result
|
43 |
-
|
44 |
-
# Tokenize dataset
|
45 |
-
tokenized_datasets = combined_dataset.map(tokenize_function, batched=True, num_proc=4)
|
46 |
-
|
47 |
-
# Group texts into chunks of max_len
|
48 |
-
tokenized_datasets = tokenized_datasets.map(
|
49 |
-
group_texts,
|
50 |
-
batched=True,
|
51 |
-
num_proc=4,
|
52 |
-
)
|
53 |
-
|
54 |
-
# Train the model
|
55 |
-
trainer = Trainer(
|
56 |
-
model=model,
|
57 |
-
args=training_args,
|
58 |
-
train_dataset=tokenized_datasets,
|
59 |
-
tokenizer=tokenizer,
|
60 |
-
)
|
61 |
-
|
62 |
-
trainer.train()
|
63 |
-
|
64 |
-
# Save the trained model
|
65 |
-
trainer.save_model("PyStreamlitGPT")
|
|
|
1 |
+
import subprocess
|
|
|
|
|
2 |
|
3 |
+
# Define dependencies
|
4 |
+
dependencies = [
|
5 |
+
"transformers==4.13.0", # Make sure to specify the version
|
6 |
+
"datasets==1.15.0", # Make sure to specify the version
|
7 |
+
]
|
8 |
|
9 |
+
# Install dependencies
|
10 |
+
for dependency in dependencies:
|
11 |
+
subprocess.call(["pip", "install", dependency])
|
|
|
12 |
|
13 |
+
# Run train.py
|
14 |
+
subprocess.call(["python", "train.py"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|