from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification id2label = { 0: "sadness", 1:"joy", 2:"love", 3:"anger", 4:"fear", 5:"surprise" } label2id = { "sadness":0, "joy":1, "love":2, "anger":3, "fear":4, "surprise":5} tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained("Sadiksha/sentiment_analysis_bert", id2label=id2label, label2id=label2id) pipe = pipeline('sentiment-analysis', model = model, tokenizer=tokenizer) import gradio as gr def predict(text): return pipe(text)[0]['label'] iface = gr.Interface( fn=predict, inputs='text', outputs='text', examples=[["I just received an unexpected gift from my friend and it made my day!"], ["I am feeling so lonely without my family around during the holidays."], ["I have a fear of spiders, they give me the creeps."]] ) iface.launch()