Spaces:
Running
Running
File size: 1,133 Bytes
74d8f71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from langchain_community.vectorstores import FAISS
import os
from datetime import datetime
vector_store_path = "/home/user/VectorStoreDB"
index_name = "faiss_index"
full_index_path = os.path.join(vector_store_path, index_name)
start = ""
end = ""
def embed_docs(documents, embedder):
# Ensure the directory exists
os.makedirs(vector_store_path, exist_ok=True)
# just query if it exists
if os.path.exists(full_index_path):
print(f"Loading existing vector store at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
saved_vector = FAISS.load_local(full_index_path,
embeddings=embedder,
allow_dangerous_deserialization=True)
return saved_vector
else:
print(f"Embedding documents at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
embedded_vector = FAISS.from_documents(documents=documents, embedding=embedder)
embedded_vector.save_local(full_index_path)
print(f"Vector store saved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
return embedded_vector |