Sadiksmart0 commited on
Commit
f8b6d05
·
verified ·
1 Parent(s): 64374b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -28
app.py CHANGED
@@ -1,19 +1,18 @@
1
  from langchain_core.prompts import PromptTemplate
2
  from langchain.chains import create_retrieval_chain
3
  from langchain.chains.combine_documents import create_stuff_documents_chain
4
- import gradio as gr
5
- from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
6
  import numpy as np
7
  from langchain_ollama import OllamaLLM
8
  from langchain_huggingface import HuggingFaceEmbeddings
9
- from langchain_community.llms import HuggingFacePipeline
10
  from load_document import load_data
11
  from split_document import split_docs
12
  from embed_docs import embed_docs
13
  from retrieve import retrieve
14
  from datetime import datetime
15
- # from js import js
16
- # from theme import theme
17
  import os
18
  import glob
19
  from fastapi import FastAPI, Query, Request
@@ -40,34 +39,13 @@ embedder = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6
40
 
41
  def fetch_doc():
42
  # Adjust the path as needed, e.g., './' for current directory
43
- pdf_files = glob.glob("Document/*.pdf")
44
-
45
- # If you want to include subdirectories:
46
- # pdf_files = glob.glob("**/*.pdf", recursive=True)
47
 
48
  return pdf_files
49
 
50
  # # Define llm
51
  hf_token = os.environ.get("HF_TOKEN").strip() # Ensure to set your Hugging Face token in the environment variable HF_TOKEN
52
- # #llm = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", device="cpu", use_auth_token=hf_token, token=hf_token)
53
- # #llm = OllamaLLM(model="mistral:7b-instruct", base_url="http://host.docker.internal:11434")
54
- model_id = "google/gemma-2b-it"
55
-
56
- # # Load tokenizer and model
57
- tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
58
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu", torch_dtype="auto", token=hf_token)
59
-
60
- # # Create text generation pipeline
61
- hf_pipe = pipeline(
62
- "text-generation",
63
- model=model,
64
- tokenizer=tokenizer,
65
- max_new_tokens=512,
66
- temperature=0.7,
67
- top_p=0.9,
68
- do_sample=True
69
- )
70
- llm = HuggingFacePipeline(pipeline=hf_pipe)
71
 
72
  pdf_files = fetch_doc() #Fetch Dataset
73
  chunks = None
 
1
  from langchain_core.prompts import PromptTemplate
2
  from langchain.chains import create_retrieval_chain
3
  from langchain.chains.combine_documents import create_stuff_documents_chain
4
+ # import gradio as gr
 
5
  import numpy as np
6
  from langchain_ollama import OllamaLLM
7
  from langchain_huggingface import HuggingFaceEmbeddings
8
+ # from langchain_community.llms import HuggingFacePipeline
9
  from load_document import load_data
10
  from split_document import split_docs
11
  from embed_docs import embed_docs
12
  from retrieve import retrieve
13
  from datetime import datetime
14
+ from js import js
15
+ from theme import theme
16
  import os
17
  import glob
18
  from fastapi import FastAPI, Query, Request
 
39
 
40
  def fetch_doc():
41
  # Adjust the path as needed, e.g., './' for current directory
42
+ pdf_files = glob.glob("*.pdf")
 
 
 
43
 
44
  return pdf_files
45
 
46
  # # Define llm
47
  hf_token = os.environ.get("HF_TOKEN").strip() # Ensure to set your Hugging Face token in the environment variable HF_TOKEN
48
+ llm = OllamaLLM(model="mistral:7b-instruct")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  pdf_files = fetch_doc() #Fetch Dataset
51
  chunks = None