from langchain_community.vectorstores import FAISS import os from datetime import datetime vector_store_path = "/home/user/VectorStoreDB" index_name = "faiss_index" full_index_path = os.path.join(vector_store_path, index_name) start = "" end = "" def embed_docs(documents, embedder): # Ensure the directory exists os.makedirs(vector_store_path, exist_ok=True) # just query if it exists if os.path.exists(full_index_path): print(f"Loading existing vector store at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") saved_vector = FAISS.load_local(full_index_path, embeddings=embedder, allow_dangerous_deserialization=True) return saved_vector else: print(f"Embedding documents at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") embedded_vector = FAISS.from_documents(documents=documents, embedding=embedder) embedded_vector.save_local(full_index_path) print(f"Vector store saved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") return embedded_vector