File size: 6,912 Bytes
a992504
 
 
 
 
 
 
 
 
beef901
a992504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84e121
a992504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84e121
 
a992504
 
 
 
 
 
 
 
 
 
f2a89bd
 
f8e1476
f2a89bd
a992504
 
f2a89bd
 
 
a992504
 
 
 
 
 
f8e1476
 
 
a992504
 
 
 
 
 
 
 
 
f8e1476
 
 
a992504
 
 
 
 
 
 
 
 
f8e1476
 
 
a992504
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import streamlit as st
from PIL import Image




st.title(' _Welcome to my Projects Portfolio_ ')

with st.sidebar:
    image = Image.open("Images/IMG-20220413-WA0005.jpg")
    st.image(image)
    st.subheader("Interest")
    st.markdown("""
        - Football
        - Reading 
        - Cycling
    """)



col1, col2 = st.columns(2)
with col1:
    st.write("Name: Abubakar Muhammed Muktar")
    st.write("Status: Masters Student, Data Science & Analytics")
    st.write("School: EPITA")
with col2:    
    st.write("Strength: Serial learning, knowing I can always improve.")
    st.write("Favourite Quote: In God we trust, Everyone else bring data!")
st.header("Data Science and Engineering Project  Section")
with st.expander("PROJECT 1:  Fairly Used Car Prediction Platform"):
    st.subheader('Fairly Used Car Prediction Platform')
    st.write("This project is ...")
    st.markdown("""
    - Created a price estimation model for fairly used car using Linear Regression
    - Developed a web platform Using Streamlit and deployed the model as a service\n
    - Platform can predict take direct input from a user or take a csv file and run predictions on them\n
    - Used postgres to save user predictions and user can query past prediction from the database\n
    - Airflow to schedule data ingestion and prediction jobs\n
    - Used Grafana to monitor model and MLFlow for retraining.
    """)

    st.markdown("[Project CODE](https://github.com/sadiksmart0/Used-Car-ML)")
    video_file = open('videos/Fairly-used.mp4', 'rb')
    video_bytes = video_file.read()
    st.video(video_bytes)

with st.expander("PROJECT 2: Music Emotion Recognition and Recommendatation."):
    st.subheader('Music Emotion Recognition and Recommendatation')
    st.write("This project is ...")
    st.markdown("""
    - Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
    - Deployed the model on Heroku and serve the it using FastApi.
    - Develop and deployed the app on streamlit.
    - Presented the work as part of our masters thesis.
    """)

    st.markdown("[Project CODE](https://github.com/anthonybassaf/music-mood-recognition)")
    video_file = open('videos/music-mood.mp4', 'rb')
    video_bytes = video_file.read()
    st.video(video_bytes)

with st.expander("PROJECT 3: Brain Tumor Segmentation"):
    st.subheader('Brain Tumor Segmentation')
    st.write("This project is ...")
    st.markdown("""
    - Created a deep learning model based on the U-net architecture to segment brain tumor images.
    - Used tensorflow in the implementation.
    - Engineered the data into desired format.
    - Evaluated model performance based on Dice loss
    """)

    st.markdown("[Project CODE](https://github.com/sadiksmart0/Image-seg)")
    video_file = open('videos/Fairly-used.mp4', 'rb')
    video_bytes = video_file.read()
    st.video(video_bytes)


with st.expander("PROJECT 4: Movie Recommendatation system."):
    st.subheader('Movie Recommendatation system.')
    st.write("This project is ...")
    st.markdown("""
    - Implemented a movie recommendation system for using the cosine similarity, users and movie rating.
    - Scrape the web for movie posters and details using BeautifulSoup
    - Built a streamlit app for the recommendation plaform
    - Employed TF-IDF for tokenization.
    """)
     
    st.markdown("[Project CODE](https://github.com/sadiksmart0/Movie-Recommender)")
    video_file = open('videos/movie-recommender.mp4', 'rb')
    video_bytes = video_file.read()
    st.video(video_bytes)

with st.expander("PROJECT 5: End-to-End Data Engineering Project using Kaggle YouTube Trending Dataset"):
    st.subheader('Movie Recommendatation system.')
    st.write("This project intends to manage, simplify, and analyze structured and semi-structured YouTube video data based on video categories and trending metrics in a secure manner.")
    st.markdown("""
    - Implement the data pipeline completely using AWS cloud.
    - Data Lake to hold raw ingested data using Amazon S3
    - Used AWS Lambda to preprocess the data to a parquet.
    - Data Warehouse to hold cleansed data in Amazon S3
    - Catalogue the data using AWS Glue.
    - Used Athena to query the data.
    - Used IAM to create rule and policies to allow access accross these tools
    - Used QuickSight to run analysis on our final data
    - Used cloudwatch to monitor all of the processes for easy tracking.
    """)
    image1 = Image.open("Images/pipeline.png")
    image2 = Image.open("Images/analytics.png")
    st.image(image1)
    st.image(image2)
    
    
st.header("Data Analysis Project  Section")
st.subheader('Pandas')
with st.expander("PROJECT 1: Analysis of Ligue 1 From 2010-2021"):
    st.subheader('Analysis of Ligue 1 From 2010-2021')
    st.write("This project intends to ...")
    st.markdown("""
    - Analyzed 12 season for Ligue 1
    - Used plotly express and dash for visualization.
    - Pandas to load and run analysis.
    - Streamlit for the web app.
    """)
    st.markdown("[Project CODE](https://github.com/sadiksmart0/DataVisualizationProject)")
    video_file = open('videos/ligue1.mp4', 'rb')
    video_bytes = video_file.read()
    st.video(video_bytes)
  

with st.expander("PROJECT 1: Analysis of Google play Apps"):
    st.subheader('Analysis of Google play Apps')
    st.write("This project intends to ...")
    st.markdown("""
    - Analyzed google play apps.
    - Utilized matplotlib for visualization.
    - Utilized jupyter notebook for the analysis.
    """)
    # # st.image("https://static.streamlit.io/examples/dice.jpg")
    st.markdown("[Project CODE](https://github.com/sadiksmart0/Android-App-Market/blob/main/Android%20App%20Market.ipynb)")
  

with st.expander("PROJECT 1: Analysis of Netflix movies"):
    st.subheader('Analysis of Netflix movies')
    st.write("This project intends to ...")
    st.markdown("""
    - Analyzed Netflix movies dataset.
    - Utilized matplotlib for visualization.
    - Utilized jupyter notebook for the analysis.
    """)
    # # st.image("https://static.streamlit.io/examples/dice.jpg")
    st.markdown("[Project CODE](https://github.com/sadiksmart0/Netflix-Movies/blob/main/Netflix-Movies.ipynb)")
   

with st.expander("PROJECT 1: Analysis of Nobel Prize Winners"):
    st.subheader('Analysis of Nobel Prize Winners')
    st.write("This project intends to ...")
    st.markdown("""
    - Analyzed Nobel prize winners from the dataset.
    - Utilized matplotlib for visualization.
    - Utilized jupyter notebook for the analysis.
    """)
    # # st.image("https://static.streamlit.io/examples/dice.jpg")
    st.markdown("[Project CODE](https://github.com/sadiksmart0/Nobel-Prize/blob/main/Nobel_Prize.ipynb)")
   
st.subheader('Tableau')
st.subheader('Dataiku')