Sadiksmart0 commited on
Commit
6ac78ef
·
1 Parent(s): beef901

Delete my_portfolio

Browse files
my_portfolio/Images/IMG-20220413-WA0005.jpg DELETED
Binary file (90.3 kB)
 
my_portfolio/Images/analytics.png DELETED
Binary file (123 kB)
 
my_portfolio/Images/pipeline.png DELETED
Binary file (49.9 kB)
 
my_portfolio/README.md DELETED
@@ -1,24 +0,0 @@
1
- # WELCOME TO MY PORTFOLIO
2
- #DATA SCIENCE PROJECTS SECTION
3
-
4
- #PROJECT 1: [FAIRLY USED CAR PREDICTION PLATFORM OVERVIEW](https://github.com/sadiksmart0/Used-Car-ML)
5
-
6
- * Created a price estimation model for fairly used car using Linear Regression.
7
- * Developed a web platform Using Streamlit and deployed the model as a service.
8
- * Platform can predict take direct input from a user or take a csv file and run predictions on them.
9
- * Used postgres to save user predictions and user can query past prediction from the database.
10
- * Airflow to schedule data ingestion and prediction jobs.
11
- * Used Grafana to monitor model and MLFlow for retraining
12
-
13
- https://github.com/sadiksmart0/my_portfolio/blob/main/videos/Fairly-used.mp4
14
-
15
- #Project 2: Music Emotion Recognition and Recommendatation.
16
-
17
- * Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec
18
- for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
19
- * Deployed the model on Heroku and serve the it using FastApi.
20
- * Develop and deployed the app on streamlit.
21
- * Presented the work as part of our masters thesis.
22
-
23
-
24
- #Project 3: Movie Recommendations Overview
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
my_portfolio/app.py DELETED
@@ -1,167 +0,0 @@
1
- import streamlit as st
2
- from PIL import Image
3
-
4
-
5
-
6
-
7
- st.title(' _Welcome to my Projects Portfolio_ ')
8
-
9
- with st.sidebar:
10
- image = Image.open("/Images/IMG-20220413-WA0005.jpg")
11
- st.image(image)
12
- st.subheader("Interest")
13
- st.markdown("""
14
- - Football
15
- - Reading
16
- - Cycling
17
- """)
18
-
19
-
20
-
21
- col1, col2 = st.columns(2)
22
- with col1:
23
- st.write("Name: Abubakar Muhammed Muktar")
24
- st.write("Status: Masters Student, Data Science & Analytics")
25
- st.write("School: EPITA")
26
- with col2:
27
- st.write("Strength: Serial learning, knowing I can always improve.")
28
- st.write("Favourite Quote: In God we trust, Everyone else bring data!")
29
- st.header("Data Science and Engineering Project Section")
30
- with st.expander("PROJECT 1: Fairly Used Car Prediction Platform"):
31
- st.subheader('Fairly Used Car Prediction Platform')
32
- st.write("This project is ...")
33
- st.markdown("""
34
- - Created a price estimation model for fairly used car using Linear Regression
35
- - Developed a web platform Using Streamlit and deployed the model as a service\n
36
- - Platform can predict take direct input from a user or take a csv file and run predictions on them\n
37
- - Used postgres to save user predictions and user can query past prediction from the database\n
38
- - Airflow to schedule data ingestion and prediction jobs\n
39
- - Used Grafana to monitor model and MLFlow for retraining.
40
- """)
41
-
42
- st.markdown("[Project CODE](https://github.com/sadiksmart0/Used-Car-ML)")
43
- video_file = open('C:/Users/A.M. MUKTAR/my_portfolio/videos/Fairly-used.mp4', 'rb')
44
- video_bytes = video_file.read()
45
- st.video(video_bytes)
46
-
47
- with st.expander("PROJECT 2: Music Emotion Recognition and Recommendatation."):
48
- st.subheader('Music Emotion Recognition and Recommendatation')
49
- st.write("This project is ...")
50
- st.markdown("""
51
- - Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
52
- - Deployed the model on Heroku and serve the it using FastApi.
53
- - Develop and deployed the app on streamlit.
54
- - Presented the work as part of our masters thesis.
55
- """)
56
-
57
- st.markdown("[Project CODE](https://github.com/anthonybassaf/music-mood-recognition)")
58
- video_file = open('videos/music-mood.mp4', 'rb')
59
- video_bytes = video_file.read()
60
- st.video(video_bytes)
61
-
62
- with st.expander("PROJECT 3: Brain Tumor Segmentation"):
63
- st.subheader('Brain Tumor Segmentation')
64
- st.write("This project is ...")
65
- st.markdown("""
66
- - Created a deep learning model based on the U-net architecture to segment brain tumor images.
67
- - Used tensorflow in the implementation.
68
- - Engineered the data into desired format.
69
- - Evaluated model performance based on Dice loss
70
- """)
71
-
72
- st.markdown("[Project CODE](https://github.com/sadiksmart0/Image-seg)")
73
- video_file = open('videos/Fairly-used.mp4', 'rb')
74
- video_bytes = video_file.read()
75
- st.video(video_bytes)
76
-
77
-
78
- with st.expander("PROJECT 4: Movie Recommendatation system."):
79
- st.subheader('Movie Recommendatation system.')
80
- st.write("This project is ...")
81
- st.markdown("""
82
- - Implemented a movie recommendation system for using the cosine similarity, users and movie rating.
83
- - Scrape the web for movie posters and details using BeautifulSoup
84
- - Built a streamlit app for the recommendation plaform
85
- - Employed TF-IDF for tokenization.
86
- """)
87
-
88
- st.markdown("[Project CODE](https://github.com/sadiksmart0/Movie-Recommender)")
89
- video_file = open('videos/movie-recommender.mp4', 'rb')
90
- video_bytes = video_file.read()
91
- st.video(video_bytes)
92
-
93
- with st.expander("PROJECT 5: End-to-End Data Engineering Project using Kaggle YouTube Trending Dataset"):
94
- st.subheader('Movie Recommendatation system.')
95
- st.write("This project intends to manage, simplify, and analyze structured and semi-structured YouTube video data based on video categories and trending metrics in a secure manner.")
96
- st.markdown("""
97
- - Implement the data pipeline completely using AWS cloud.
98
- - Data Lake to hold raw ingested data using Amazon S3
99
- - Used AWS Lambda to preprocess the data to a parquet.
100
- - Data Warehouse to hold cleansed data in Amazon S3
101
- - Catalogue the data using AWS Glue.
102
- - Used Athena to query the data.
103
- - Used IAM to create rule and policies to allow access accross these tools
104
- - Used QuickSight to run analysis on our final data
105
- - Used cloudwatch to monitor all of the processes for easy tracking.
106
- """)
107
- image1 = Image.open("C:/Users/A.M. MUKTAR/my_portfolio/Images/pipeline.png")
108
- image2 = Image.open("C:/Users/A.M. MUKTAR/my_portfolio/Images/analytics.png")
109
- st.image(image1)
110
- st.image(image2)
111
-
112
-
113
- st.header("Data Analysis Project Section")
114
- st.subheader('Pandas')
115
- with st.expander("PROJECT 1: Analysis of Ligue 1 From 2010-2021"):
116
- st.subheader('Analysis of Ligue 1 From 2010-2021')
117
- st.write("This project intends to ...")
118
- st.markdown("""
119
- - Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
120
- - Deployed the model on Heroku and serve the it using FastApi.
121
- - Develop and deployed the app on streamlit.
122
- - Presented the work as part of our masters thesis.
123
- """)
124
- # # st.image("https://static.streamlit.io/examples/dice.jpg")
125
- st.markdown("[Project CODE](https://github.com/sadiksmart0/DataVisualizationProject)")
126
-
127
-
128
- with st.expander("PROJECT 1: Analysis of Google play Apps"):
129
- st.subheader('Analysis of Google play Apps')
130
- st.write("This project intends to ...")
131
- st.markdown("""
132
- - Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
133
- - Deployed the model on Heroku and serve the it using FastApi.
134
- - Develop and deployed the app on streamlit.
135
- - Presented the work as part of our masters thesis.
136
- """)
137
- # # st.image("https://static.streamlit.io/examples/dice.jpg")
138
- st.markdown("[Project CODE](https://github.com/sadiksmart0/Android-App-Market/blob/main/Android%20App%20Market.ipynb)")
139
-
140
-
141
- with st.expander("PROJECT 1: Analysis of Netflix movies"):
142
- st.subheader('Analysis of Netflix movies')
143
- st.write("This project intends to ...")
144
- st.markdown("""
145
- - Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
146
- - Deployed the model on Heroku and serve the it using FastApi.
147
- - Develop and deployed the app on streamlit.
148
- - Presented the work as part of our masters thesis.
149
- """)
150
- # # st.image("https://static.streamlit.io/examples/dice.jpg")
151
- st.markdown("[Project CODE](https://github.com/sadiksmart0/Netflix-Movies/blob/main/Netflix-Movies.ipynb)")
152
-
153
-
154
- with st.expander("PROJECT 1: Analysis of Nobel Prize Winners"):
155
- st.subheader('Analysis of Nobel Prize Winners')
156
- st.write("This project intends to ...")
157
- st.markdown("""
158
- - Collaborated and developed a state-of-the-art deep learning model using BERT and gensims Doc2Vec for recognizing song emotion and give recommendations based on that given lyrics, song title and artist name.
159
- - Deployed the model on Heroku and serve the it using FastApi.
160
- - Develop and deployed the app on streamlit.
161
- - Presented the work as part of our masters thesis.
162
- """)
163
- # # st.image("https://static.streamlit.io/examples/dice.jpg")
164
- st.markdown("[Project CODE](https://github.com/sadiksmart0/Nobel-Prize/blob/main/Nobel_Prize.ipynb)")
165
-
166
- st.subheader('Tableau')
167
- st.subheader('Dataiku')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
my_portfolio/videos/Fairly-used.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8a8af4fe6ef00f765a7f1496652d94ee307edef547ea560811daeae7e9b57a71
3
- size 27906155
 
 
 
 
my_portfolio/videos/movie-recommender.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ed8dfb4881b256ce9dea8690195ed66c2a1d56cd40ebdcd00cee4ceb8871e04b
3
- size 19207311
 
 
 
 
my_portfolio/videos/music-mood.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:422eac24929a3a900f1d4354b7987846dc0948625e5efe2f30e4f97bdee4fef0
3
- size 19784159
 
 
 
 
my_portfolio/videos/requirements.txt DELETED
@@ -1 +0,0 @@
1
- streamlit==1.19.0