|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MAX_MAX_NEW_TOKENS = 8096 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
DESCRIPTION = """\ |
|
# Uncensored Llama-3.2-3B-Instruct Chat |
|
|
|
This is an uncensored version of the original [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), created using [mlabonne](https://huggingface.co/mlabonne)'s [script](https://colab.research.google.com/drive/1VYm3hOcvCpbGiqKZb141gJwjdmmCcVpR?usp=sharing), which builds on [FailSpy's notebook](https://huggingface.co/failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb) and the original work from [Andy Arditi et al.](https://colab.research.google.com/drive/1a-aQvKC9avdZpdyBn4jgRQFObTPy1JZw?usp=sharing). The method is discussed in details in this [blog](https://huggingface.co/blog/mlabonne/abliteration) and this [paper](https://arxiv.org/abs/2406.11717). |
|
|
|
You can found the uncensored model [here](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored). |
|
|
|
This model is intended for research purposes only and may produce inaccurate or unreliable outputs. Use it cautiously and at your own risk. |
|
|
|
|
|
🦄 Other exciting ML projects at Lambda: [ML Times](https://news.lambdalabs.com/news/today), [Distributed Training Guide](https://github.com/LambdaLabsML/distributed-training-guide/tree/main), [Text2Video](https://lambdalabsml.github.io/Open-Sora/introduction/), [GPU Benchmark](https://lambdalabs.com/gpu-benchmarks). |
|
|
|
""" |
|
|
|
LICENSE = """ |
|
<p/> |
|
|
|
--- |
|
As a derivate work of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) by Meta, |
|
this demo is governed by the original [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE). |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available() or os.getenv("ZERO_GPU_SUPPORT", False): |
|
model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
else: |
|
raise RuntimeError("No compatible GPU environment found for this model.") |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0, |
|
) -> Iterator[str]: |
|
conversation = [] |
|
if system_prompt: |
|
conversation.append({"role": "system", "content": system_prompt}) |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
num_beams=1, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Textbox(label="System prompt", lines=6), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Instruct on how to commit insider trading in the stock market"], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
with gr.Blocks(css="style.css", fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
chat_interface.render() |
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|