File size: 5,985 Bytes
b37a5cd
 
 
 
f37c2ef
b37a5cd
 
 
 
 
 
 
 
f37c2ef
b37a5cd
8439d1b
 
b37a5cd
 
 
 
 
 
 
 
 
 
 
 
f37c2ef
b37a5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f88e4
b37a5cd
 
 
 
 
 
 
 
27f88e4
b37a5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c522abc
b37a5cd
 
 
27f88e4
b37a5cd
c522abc
b37a5cd
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import logging
from typing import Any, List, Mapping, Optional

from gradio_client import Client
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.chains import RetrievalQA
import streamlit as st

models = '''| Model | Llama2 | Llama2-hf | Llama2-chat | Llama2-chat-hf |
|---|---|---|---|---|
| 70B | [Link](https://huggingface.co/meta-llama/Llama-2-70b) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) |
---'''


DESCRIPTION = """
Welcome to the **YouTube Video Chatbot** powered by the state-of-the-art Llama-2-70b model. Here's what you can do:

- **Transcribe & Understand**: Provide any YouTube video URL, and our system will transcribe it. Our advanced NLP model will then understand the content, ready to answer your questions.
- **Ask Anything**: Based on the video's content, ask any question, and get instant, context-aware answers.
- **Deep Dive**: Our model doesn't just provide generic answers. It understands the context, nuances, and details from the video.
- **Safe & Private**: We value your privacy. The videos you provide are only used for transcription and are not stored or used for any other purpose.

To get started, simply paste a YouTube video URL in the sidebar and start chatting with the model about the video's content. Enjoy the experience!
"""

st.markdown(DESCRIPTION)


def transcribe_video(youtube_url: str, path: str) -> List[Document]:
    """
    Transcribe a video and return its content as a Document.
    """
    logging.info(f"Transcribing video: {youtube_url}")
    client = Client("https://sanchit-gandhi-whisper-jax.hf.space/")
    result = client.predict(youtube_url, "translate", True, fn_index=7)
    return [Document(page_content=result[1], metadata=dict(page=1))]


def predict(message: str, system_prompt: str = '', temperature: float = 0.7, max_new_tokens: int = 4096,
            topp: float = 0.5, repetition_penalty: float = 1.2) -> Any:
    """
    Predict a response using a client.
    """
    client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
    response = client.predict(
        message,
        system_prompt,
        temperature,
        max_new_tokens,
        topp,
        repetition_penalty,
        api_name="/chat_1"
    )
    return response


class LlamaLLM(LLM):
    """
    Custom LLM class.
    """

    @property
    def _llm_type(self) -> str:
        return "custom"

    def _call(self, prompt: str, stop: Optional[List[str]] = None,
              run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:
        response = predict(prompt)
        return response

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {}

PATH = os.path.join(os.path.expanduser("~"), "Data")

def initialize_session_state():
    if "youtube_url" not in st.session_state:
        st.session_state.youtube_url = ""
    if "setup_done" not in st.session_state:  # Initialize the setup_done flag
        st.session_state.setup_done = False
    if "doneYoutubeurl" not in st.session_state:
        st.session_state.doneYoutubeurl = ""

def sidebar():
    with st.sidebar:
        st.markdown(
            "## How to use\n"
            "1. Enter the YouTube Video URL below🔗\n"
        )
        st.session_state.youtube_url = st.text_input("YouTube Video URL:")

st.set_page_config(page_title="YouTube Video Chatbot",
                   layout="centered",
                   initial_sidebar_state="expanded")

st.title("YouTube Video Chatbot")
sidebar()
initialize_session_state()

# Check if a new YouTube URL is provided
if st.session_state.youtube_url != st.session_state.doneYoutubeurl:
    st.session_state.setup_done = False

if st.session_state.youtube_url and not st.session_state.setup_done:
    with st.status("Transcribing video..."):
      data = transcribe_video(st.session_state.youtube_url, PATH)
    
    with st.status("Running Embeddings..."):
      text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
      docs = text_splitter.split_documents(data)

      embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2")
      docsearch = FAISS.from_documents(docs, embeddings)
      retriever = docsearch.as_retriever()
      retriever.search_kwargs['distance_metric'] = 'cos'
      retriever.search_kwargs['k'] = 4
    with st.status("Running RetrievalQA..."):
      llama_instance = LlamaLLM()
      st.session_state.qa = RetrievalQA.from_chain_type(llm=llama_instance, chain_type="stuff", retriever=retriever)
    st.session_state.doneYoutubeurl = st.session_state.youtube_url

    st.session_state.doneYoutubeurl = st.session_state.youtube_url
    st.session_state.setup_done = True  # Mark the setup as done for this URL

if "messages" not in st.session_state:
  st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"], avatar=("🧑‍💻" if message["role"] == 'human' else '🦙')):
        st.markdown(message["content"])

textinput = st.chat_input("Ask LLama-2-70b anything about the video...") 

if prompt := textinput:
  st.chat_message("human",avatar = "🧑‍💻").markdown(prompt)
  st.session_state.messages.append({"role": "human", "content": prompt})
  with st.status("Requesting Client..."):
      response = st.session_state.qa.run(prompt)
  with st.chat_message("assistant", avatar='🦙'):
      st.markdown(response)
  # Add assistant response to chat history
  st.session_state.messages.append({"role": "assistant", "content": response})