Spaces:
Runtime error
Runtime error
File size: 9,107 Bytes
b37a5cd a0737f2 f37c2ef b37a5cd a4849de b37a5cd 6fe7bd1 a0737f2 3b93f52 a1ec413 68a3166 a1ec413 3b29bee 9bf9831 3b29bee b37a5cd 3b29bee b37a5cd 3b29bee f37c2ef dcd59a4 b37a5cd 6fe7bd1 e904acf 3b29bee e904acf b37a5cd f1de2d5 c513390 b37a5cd 4de1eb8 152ba24 4de1eb8 152ba24 d82aade b37a5cd 3b29bee b37a5cd 839085d 306b0a2 4de1eb8 b7c70e4 839085d b37a5cd f0b62b5 3b29bee b37a5cd 6fe7bd1 e904acf 6fe7bd1 3b29bee b7c70e4 b37a5cd 848ca01 a4849de 152ba24 3b29bee 4de1eb8 152ba24 b37a5cd 3b29bee b37a5cd 3b29bee b37a5cd 3b29bee b37a5cd 3b29bee b37a5cd 3b29bee b37a5cd 3b29bee c522abc b37a5cd 3b29bee b37a5cd 27f88e4 3b29bee c522abc b37a5cd 3b29bee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import logging
from typing import Any, List, Mapping, Optional
from langchain.llms import HuggingFaceHub
from gradio_client import Client
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import streamlit as st
from pytube import YouTube
# import replicate
DESCRIPTION = """
<div class="max-w-full overflow-auto">
<table>
<thead>
<tr>
<th>Model</th>
<th>Llama2</th>
<th>Llama2-hf</th>
<th>Llama2-chat</th>
<th>Llama2-chat-hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>7B</td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-7b">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-7b-hf">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-7b-chat">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf">Link</a></td>
</tr>
<tr>
<td>13B</td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-13b">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-13b-hf">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-13b-chat">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-13b-chat-hf">Link</a></td>
</tr>
<tr>
<td>70B</td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-70b">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-70b-hf">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-70b-chat">Link</a></td>
<td><a rel="noopener nofollow" href="https://huggingface.co/meta-llama/Llama-2-70b-chat-hf">Link</a></td>
</tr>
</tbody>
</table>
</div>
openai/whisper-large-v3
"""
models = {
"Llama2-70b": {
"model_link": "https://huggingface.co/meta-llama/Llama-2-70b",
"chat_link": "https://ysharma-explore-llamav2-with-tgi.hf.space/",
},
"Llama2-13b": {
"model_link": "https://huggingface.co/meta-llama/Llama-2-13b",
"chat_link": "https://huggingface-projects-llama-2-13b-chat.hf.space/",
}
}
DESCRIPTION = """
Welcome to the **YouTube Video Chatbot** powered by Llama-2 models. Here's what you can do:
- **Transcribe & Understand**: Provide any YouTube video URL, and our system will transcribe it. Our advanced NLP model will then understand the content, ready to answer your questions.
- **Ask Anything**: Based on the video's content, ask any question, and get instant, context-aware answers.
To get started, simply paste a YouTube video URL and select a model in the sidebar, then start chatting with the model about the video's content. Enjoy the experience!
"""
st.title("YouTube Video Chatbot")
st.markdown(DESCRIPTION)
def get_video_title(youtube_url: str) -> str:
yt = YouTube(youtube_url)
embed_url = f"https://www.youtube.com/embed/{yt.video_id}"
embed_html = f'<iframe src="{embed_url}" frameborder="0" allowfullscreen></iframe>'
return yt.title, embed_html
def transcribe_video(youtube_url: str, path: str) -> List[Document]:
"""
Transcribe a video and return its content as a Document.
"""
logging.info(f"Transcribing video: {youtube_url}")
client = Client("https://sanchit-gandhi-whisper-jax.hf.space/")
result = client.predict(youtube_url, "translate", True, fn_index=7)
return [Document(page_content=result[1], metadata=dict(page=1))]
def predict(message: str, system_prompt: str = '', temperature: float = 0.7, max_new_tokens: int = 1024,
topp: float = 0.5, repetition_penalty: float = 1.2) -> Any:
"""
Predict a response using a client.
"""
client = Client("https://osanseviero-mistral-super-fast.hf.space/")
response = client.predict(
message,
temperature,
max_new_tokens,
topp,
repetition_penalty,
api_name="/chat"
)
return response
PATH = os.path.join(os.path.expanduser("~"), "Data")
def initialize_session_state():
if "youtube_url" not in st.session_state:
st.session_state.youtube_url = ""
if "model_choice" not in st.session_state:
st.session_state.model_choice = "Llama2-70b"
if "setup_done" not in st.session_state:
st.session_state.setup_done = False
if "doneYoutubeurl" not in st.session_state:
st.session_state.doneYoutubeurl = ""
def sidebar():
with st.sidebar:
st.markdown("# 💸 **Support our project**")
st.markdown("This money would be used for paying for API and supporting our team.")
st.markdown("[🔗 Link](https://send.monobank.ua/jar/4mvqDivxmP)")
st.markdown("")
st.markdown("# Enter the YouTube Video URL below🔗")
st.session_state.youtube_url = st.text_input("YouTube Video URL:")
model_choice = st.radio("Choose a Model:", list(models.keys()))
st.session_state.model_choice = model_choice
if st.session_state.youtube_url:
# Get the video title
video_title, embed_html = get_video_title(st.session_state.youtube_url)
st.markdown(f"### {video_title}")
# Embed the video
st.markdown(embed_html, unsafe_allow_html=True)
sidebar()
initialize_session_state()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2")
prompt = PromptTemplate(
template="""Given the context about a video. Answer the user in a friendly and precise manner.
Context: {context}
Human: {question}
AI:""",
input_variables=["context", "question"]
)
class LlamaLLM(LLM):
"""
Custom LLM class.
"""
@property
def _llm_type(self) -> str:
return "custom"
def _call(self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:
model_link = models[st.session_state.model_choice]["chat_link"]
response = predict(prompt)
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {}
# Check if a new YouTube URL is provided
if st.session_state.youtube_url != st.session_state.doneYoutubeurl:
st.session_state.setup_done = False
if st.session_state.youtube_url and not st.session_state.setup_done:
with st.status("Transcribing video..."):
data = transcribe_video(st.session_state.youtube_url, PATH)
with st.status("Running Embeddings..."):
docs = text_splitter.split_documents(data)
docsearch = FAISS.from_documents(docs, embeddings)
retriever = docsearch.as_retriever()
retriever.search_kwargs["distance_metric"] = "cos"
retriever.search_kwargs["k"] = 4
with st.status("Running RetrievalQA..."):
llama_instance = LlamaLLM()
st.session_state.qa = RetrievalQA.from_chain_type(llm=llama_instance, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt})
st.session_state.doneYoutubeurl = st.session_state.youtube_url
st.session_state.setup_done = True # Mark the setup as done for this URL
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("🧑💻" if message["role"] == "human" else "🦙")):
st.markdown(message["content"])
textinput = st.chat_input("Ask anything about the video...")
if prompt := textinput:
st.chat_message("human", avatar="🧑💻").markdown(prompt)
st.session_state.messages.append({"role": "human", "content": prompt})
with st.status("Requesting Client..."):
video_title, _ = get_video_title(st.session_state.youtube_url)
additional_context = f"Given the context about a video titled '{video_title}' available at '{st.session_state.youtube_url}'."
response = st.session_state.qa.run(prompt + " " + additional_context)
with st.chat_message("assistant", avatar="🦙"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
|