File size: 1,527 Bytes
ce75f45
f37c2ef
 
ce75f45
 
 
 
 
 
f37c2ef
ce75f45
 
 
 
 
 
 
 
f37c2ef
 
ce75f45
 
d0c22ee
 
f37c2ef
 
 
 
 
 
 
 
 
ce75f45
 
f37c2ef
 
 
ce75f45
 
91214e9
3b00abf
ce75f45
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from gradio_client import Client




title = "Llama2 70B Chatbot"
description = """
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. 
"""
css = """.toast-wrap { display: none !important } """
examples=[
    ['Hello there! How are you doing?'],
    ['Can you explain to me briefly what is Python programming language?'],
    ['Explain the plot of Cinderella in a sentence.'],
    ['How many hours does it take a man to eat a Helicopter?'],
    ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ]


# Stream text
def predict(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=4096):
    
    client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
    return client.predict(
			message,	# str in 'Message' Textbox component
            system_prompt,	# str in 'Optional system prompt' Textbox component
			temperature,	# int | float (numeric value between 0.0 and 1.0)
			max_new_tokens,	# int | float (numeric value between 0 and 4096)
			0.3,	# int | float (numeric value between 0.0 and 1)
			1,	# int | float (numeric value between 1.0 and 2.0)
			api_name="/chat"
    )
        




# Gradio Demo 
with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.DuplicateButton()
    gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples) 
        
demo.queue().launch(debug=True)