import os import logging from typing import Any, List, Mapping, Optional from gradio_client import Client from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.chains import RetrievalQA import streamlit as st from pytube import YouTube models = '''| Model | Llama2 | Llama2-hf | Llama2-chat | Llama2-chat-hf | |---|---|---|---|---| | 70B | [Link](https://huggingface.co/meta-llama/Llama-2-70b) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | ---''' DESCRIPTION = """ Welcome to the **YouTube Video Chatbot** powered by the state-of-the-art Llama-2-70b model. Here's what you can do: - **Transcribe & Understand**: Provide any YouTube video URL, and our system will transcribe it. Our advanced NLP model will then understand the content, ready to answer your questions. - **Ask Anything**: Based on the video's content, ask any question, and get instant, context-aware answers. To get started, simply paste a YouTube video URL in the sidebar and start chatting with the model about the video's content. Enjoy the experience! """ st.title("YouTube Video Chatbot") st.markdown(DESCRIPTION) def get_video_title(youtube_url: str) -> str: yt = YouTube(youtube_url) embed_url = f"https://www.youtube.com/embed/{yt.video_id}" embed_html = f'' return yt.title, embed_html def transcribe_video(youtube_url: str, path: str) -> List[Document]: """ Transcribe a video and return its content as a Document. """ logging.info(f"Transcribing video: {youtube_url}") client = Client("https://sanchit-gandhi-whisper-jax.hf.space/") result = client.predict(youtube_url, "translate", True, fn_index=7) return [Document(page_content=result[1], metadata=dict(page=1))] class LlamaLLM(LLM): """ Custom LLM class. """ @property def _llm_type(self) -> str: return "custom" def _call(self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None) -> str: response = predict(prompt) return response @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {} PATH = os.path.join(os.path.expanduser("~"), "Data") def initialize_session_state(): if "youtube_url" not in st.session_state: st.session_state.youtube_url = "" if "setup_done" not in st.session_state: # Initialize the setup_done flag st.session_state.setup_done = False if "doneYoutubeurl" not in st.session_state: st.session_state.doneYoutubeurl = "" def sidebar(): with st.sidebar: st.markdown("Enter the YouTube Video URL below๐Ÿ”—\n") st.session_state.youtube_url = st.text_input("YouTube Video URL:") if st.session_state.youtube_url: # Get the video title video_title, embed_html = get_video_title(st.session_state.youtube_url) st.markdown(f"### {video_title}") # Embed the video st.markdown( embed_html, unsafe_allow_html=True ) system_promptSide = st.text_input("Optional system prompt:") temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05) max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0) ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05) RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05) def predict(message: str, system_prompt: str = system_promptSide, temperature: float = temperatureSide, max_new_tokens: int = max_new_tokensSide, topp: float = ToppSide, repetition_penalty: float = RepetitionpenaltySide) -> Any: """ Predict a response using a client. """ client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") response = client.predict( message, system_prompt, temperature, max_new_tokens, topp, repetition_penalty, api_name="/chat_1" ) return response sidebar() initialize_session_state() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2") # Check if a new YouTube URL is provided if st.session_state.youtube_url != st.session_state.doneYoutubeurl: st.session_state.setup_done = False if st.session_state.youtube_url and not st.session_state.setup_done: with st.status("Transcribing video..."): data = transcribe_video(st.session_state.youtube_url, PATH) with st.status("Running Embeddings..."): docs = text_splitter.split_documents(data) docsearch = FAISS.from_documents(docs, embeddings) retriever = docsearch.as_retriever() retriever.search_kwargs['distance_metric'] = 'cos' retriever.search_kwargs['k'] = 4 with st.status("Running RetrievalQA..."): llama_instance = LlamaLLM() st.session_state.qa = RetrievalQA.from_chain_type(llm=llama_instance, chain_type="stuff", retriever=retriever) st.session_state.doneYoutubeurl = st.session_state.youtube_url st.session_state.setup_done = True # Mark the setup as done for this URL if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"], avatar=("๐Ÿง‘โ€๐Ÿ’ป" if message["role"] == 'human' else '๐Ÿฆ™')): st.markdown(message["content"]) textinput = st.chat_input("Ask LLama-2-70b anything about the video...") if prompt := textinput: st.chat_message("human",avatar = "๐Ÿง‘โ€๐Ÿ’ป").markdown(prompt) st.session_state.messages.append({"role": "human", "content": prompt}) with st.status("Requesting Client..."): response = st.session_state.qa.run(prompt) with st.chat_message("assistant", avatar='๐Ÿฆ™'): st.markdown(response) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})