import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Model ID model_id = "large-traversaal/Alif-1.0-8B-Instruct" # Load tokenizer and model (CPU-friendly) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu") # Changed to CPU # Create text generation pipeline chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device="cpu") # Ensuring CPU use # Function to generate responses def chat(message): response = chatbot(message, max_new_tokens=100, do_sample=True, temperature=0.3) return response[0]["generated_text"] # Gradio UI with gr.Blocks() as demo: gr.Markdown("# 🤖 Alif Chatbot - Urdu Language AI Model") user_input = gr.Textbox(label="User Input", placeholder="اپنا سوال یہاں لکھیں...") submit_btn = gr.Button("Send") bot_response = gr.Textbox(label="AI Response") submit_btn.click(fn=chat, inputs=user_input, outputs=bot_response) # Launch the app if __name__ == "__main__": demo.launch()