Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM, AutoModelForSeq2SeqLM
|
3 |
+
|
4 |
+
# Load DNA Analysis Model
|
5 |
+
dna_tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
|
6 |
+
dna_model = AutoModelForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D")
|
7 |
+
dna_pipeline = pipeline("fill-mask", model=dna_model, tokenizer=dna_tokenizer)
|
8 |
+
|
9 |
+
# Load Ethical Inquiry and Learning Support Model
|
10 |
+
ethics_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
11 |
+
ethics_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
12 |
+
ethics_pipeline = pipeline("text2text-generation", model=ethics_model, tokenizer=ethics_tokenizer)
|
13 |
+
|
14 |
+
# Query Classification
|
15 |
+
def classify_query(query):
|
16 |
+
"""Classify the query into DNA Analysis, Ethical Inquiry, or Learning Support."""
|
17 |
+
if "DNA" in query or "sequence" in query:
|
18 |
+
return "dna_analysis"
|
19 |
+
elif "ethics" in query or "privacy" in query:
|
20 |
+
return "ethical_inquiry"
|
21 |
+
else:
|
22 |
+
return "learning_support"
|
23 |
+
|
24 |
+
# Process Query
|
25 |
+
def handle_query(query):
|
26 |
+
"""Route the query to the appropriate model and generate a response."""
|
27 |
+
task = classify_query(query)
|
28 |
+
|
29 |
+
if task == "dna_analysis":
|
30 |
+
try:
|
31 |
+
# Example DNA sequence processing
|
32 |
+
masked_sequence = query.replace("X", "[MASK]")
|
33 |
+
output = dna_pipeline(masked_sequence)
|
34 |
+
return f"DNA Analysis Result: {output}"
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error in DNA Analysis: {e}"
|
37 |
+
|
38 |
+
elif task == "ethical_inquiry":
|
39 |
+
try:
|
40 |
+
# Ethical guidance response
|
41 |
+
response = ethics_pipeline(query)
|
42 |
+
return f"Ethical Inquiry Response: {response[0]['generated_text']}"
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error in Ethical Inquiry: {e}"
|
45 |
+
|
46 |
+
else:
|
47 |
+
try:
|
48 |
+
# Learning support or general question response
|
49 |
+
response = ethics_pipeline(query)
|
50 |
+
return f"Learning Support Response: {response[0]['generated_text']}"
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error in Learning Support: {e}"
|
53 |
+
|
54 |
+
# Gradio Interface
|
55 |
+
def chatbot(query):
|
56 |
+
return handle_query(query)
|
57 |
+
|
58 |
+
# Deploy with Gradio
|
59 |
+
interface = gr.Interface(
|
60 |
+
fn=chatbot,
|
61 |
+
inputs="text",
|
62 |
+
outputs="text",
|
63 |
+
title="BioSphere AI Chatbot",
|
64 |
+
description="A chatbot for DNA Analysis, Ethical Guidance, and Learning Support in Biotech.",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Add Gemmini API Key Integration
|
68 |
+
def deploy_with_gemmini(api_key):
|
69 |
+
print(f"Deploying using Gemmini API Key: {api_key}")
|
70 |
+
interface.launch()
|
71 |
+
|
72 |
+
# Replace 'your_api_key' with your actual Gemmini API key
|
73 |
+
gemmini_api_key = "your_api_key"
|
74 |
+
deploy_with_gemmini(gemmini_api_key)
|