Spaces:
Runtime error
Runtime error
# Logistic Regression | |
# Importing the libraries | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
# Importing the dataset | |
dataset = pd.read_csv('Social_Network_Ads.csv') | |
X = dataset.iloc[:, :-1].values | |
y = dataset.iloc[:, -1].values | |
# Splitting the dataset into the Training set and Test set | |
from sklearn.model_selection import train_test_split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) | |
print(X_train) | |
print(y_train) | |
print(X_test) | |
print(y_test) | |
# Feature Scaling | |
from sklearn.preprocessing import StandardScaler | |
sc = StandardScaler() | |
X_train = sc.fit_transform(X_train) | |
X_test = sc.transform(X_test) | |
print(X_train) | |
print(X_test) | |
# Training the Logistic Regression model on the Training set | |
from sklearn.linear_model import LogisticRegression | |
classifier = LogisticRegression(random_state = 0) | |
classifier.fit(X_train, y_train) | |
# Predicting a new result | |
print(classifier.predict(sc.transform([[30,87000]]))) | |
# Predicting the Test set results | |
y_pred = classifier.predict(X_test) | |
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1)) | |
# Making the Confusion Matrix | |
from sklearn.metrics import confusion_matrix, accuracy_score | |
cm = confusion_matrix(y_test, y_pred) | |
print(cm) | |
accuracy_score(y_test, y_pred) | |
# Visualising the Training set results | |
from matplotlib.colors import ListedColormap | |
X_set, y_set = sc.inverse_transform(X_train), y_train | |
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), | |
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) | |
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), | |
alpha = 0.75, cmap = ListedColormap(('red', 'green'))) | |
plt.xlim(X1.min(), X1.max()) | |
plt.ylim(X2.min(), X2.max()) | |
for i, j in enumerate(np.unique(y_set)): | |
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) | |
plt.title('Logistic Regression (Training set)') | |
plt.xlabel('Age') | |
plt.ylabel('Estimated Salary') | |
plt.legend() | |
plt.show() | |
# Visualising the Test set results | |
from matplotlib.colors import ListedColormap | |
X_set, y_set = sc.inverse_transform(X_test), y_test | |
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), | |
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) | |
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), | |
alpha = 0.75, cmap = ListedColormap(('red', 'green'))) | |
plt.xlim(X1.min(), X1.max()) | |
plt.ylim(X2.min(), X2.max()) | |
for i, j in enumerate(np.unique(y_set)): | |
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) | |
plt.title('Logistic Regression (Test set)') | |
plt.xlabel('Age') | |
plt.ylabel('Estimated Salary') | |
plt.legend() | |
plt.show() |