Spaces:
Runtime error
Runtime error
Commit
·
5c3950b
1
Parent(s):
75004a2
Upload 2 files
Browse files- Social_Network_Ads.csv +401 -0
- logistic_regression.py +79 -0
Social_Network_Ads.csv
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Age,EstimatedSalary,Purchased
|
| 2 |
+
19,19000,0
|
| 3 |
+
35,20000,0
|
| 4 |
+
26,43000,0
|
| 5 |
+
27,57000,0
|
| 6 |
+
19,76000,0
|
| 7 |
+
27,58000,0
|
| 8 |
+
27,84000,0
|
| 9 |
+
32,150000,1
|
| 10 |
+
25,33000,0
|
| 11 |
+
35,65000,0
|
| 12 |
+
26,80000,0
|
| 13 |
+
26,52000,0
|
| 14 |
+
20,86000,0
|
| 15 |
+
32,18000,0
|
| 16 |
+
18,82000,0
|
| 17 |
+
29,80000,0
|
| 18 |
+
47,25000,1
|
| 19 |
+
45,26000,1
|
| 20 |
+
46,28000,1
|
| 21 |
+
48,29000,1
|
| 22 |
+
45,22000,1
|
| 23 |
+
47,49000,1
|
| 24 |
+
48,41000,1
|
| 25 |
+
45,22000,1
|
| 26 |
+
46,23000,1
|
| 27 |
+
47,20000,1
|
| 28 |
+
49,28000,1
|
| 29 |
+
47,30000,1
|
| 30 |
+
29,43000,0
|
| 31 |
+
31,18000,0
|
| 32 |
+
31,74000,0
|
| 33 |
+
27,137000,1
|
| 34 |
+
21,16000,0
|
| 35 |
+
28,44000,0
|
| 36 |
+
27,90000,0
|
| 37 |
+
35,27000,0
|
| 38 |
+
33,28000,0
|
| 39 |
+
30,49000,0
|
| 40 |
+
26,72000,0
|
| 41 |
+
27,31000,0
|
| 42 |
+
27,17000,0
|
| 43 |
+
33,51000,0
|
| 44 |
+
35,108000,0
|
| 45 |
+
30,15000,0
|
| 46 |
+
28,84000,0
|
| 47 |
+
23,20000,0
|
| 48 |
+
25,79000,0
|
| 49 |
+
27,54000,0
|
| 50 |
+
30,135000,1
|
| 51 |
+
31,89000,0
|
| 52 |
+
24,32000,0
|
| 53 |
+
18,44000,0
|
| 54 |
+
29,83000,0
|
| 55 |
+
35,23000,0
|
| 56 |
+
27,58000,0
|
| 57 |
+
24,55000,0
|
| 58 |
+
23,48000,0
|
| 59 |
+
28,79000,0
|
| 60 |
+
22,18000,0
|
| 61 |
+
32,117000,0
|
| 62 |
+
27,20000,0
|
| 63 |
+
25,87000,0
|
| 64 |
+
23,66000,0
|
| 65 |
+
32,120000,1
|
| 66 |
+
59,83000,0
|
| 67 |
+
24,58000,0
|
| 68 |
+
24,19000,0
|
| 69 |
+
23,82000,0
|
| 70 |
+
22,63000,0
|
| 71 |
+
31,68000,0
|
| 72 |
+
25,80000,0
|
| 73 |
+
24,27000,0
|
| 74 |
+
20,23000,0
|
| 75 |
+
33,113000,0
|
| 76 |
+
32,18000,0
|
| 77 |
+
34,112000,1
|
| 78 |
+
18,52000,0
|
| 79 |
+
22,27000,0
|
| 80 |
+
28,87000,0
|
| 81 |
+
26,17000,0
|
| 82 |
+
30,80000,0
|
| 83 |
+
39,42000,0
|
| 84 |
+
20,49000,0
|
| 85 |
+
35,88000,0
|
| 86 |
+
30,62000,0
|
| 87 |
+
31,118000,1
|
| 88 |
+
24,55000,0
|
| 89 |
+
28,85000,0
|
| 90 |
+
26,81000,0
|
| 91 |
+
35,50000,0
|
| 92 |
+
22,81000,0
|
| 93 |
+
30,116000,0
|
| 94 |
+
26,15000,0
|
| 95 |
+
29,28000,0
|
| 96 |
+
29,83000,0
|
| 97 |
+
35,44000,0
|
| 98 |
+
35,25000,0
|
| 99 |
+
28,123000,1
|
| 100 |
+
35,73000,0
|
| 101 |
+
28,37000,0
|
| 102 |
+
27,88000,0
|
| 103 |
+
28,59000,0
|
| 104 |
+
32,86000,0
|
| 105 |
+
33,149000,1
|
| 106 |
+
19,21000,0
|
| 107 |
+
21,72000,0
|
| 108 |
+
26,35000,0
|
| 109 |
+
27,89000,0
|
| 110 |
+
26,86000,0
|
| 111 |
+
38,80000,0
|
| 112 |
+
39,71000,0
|
| 113 |
+
37,71000,0
|
| 114 |
+
38,61000,0
|
| 115 |
+
37,55000,0
|
| 116 |
+
42,80000,0
|
| 117 |
+
40,57000,0
|
| 118 |
+
35,75000,0
|
| 119 |
+
36,52000,0
|
| 120 |
+
40,59000,0
|
| 121 |
+
41,59000,0
|
| 122 |
+
36,75000,0
|
| 123 |
+
37,72000,0
|
| 124 |
+
40,75000,0
|
| 125 |
+
35,53000,0
|
| 126 |
+
41,51000,0
|
| 127 |
+
39,61000,0
|
| 128 |
+
42,65000,0
|
| 129 |
+
26,32000,0
|
| 130 |
+
30,17000,0
|
| 131 |
+
26,84000,0
|
| 132 |
+
31,58000,0
|
| 133 |
+
33,31000,0
|
| 134 |
+
30,87000,0
|
| 135 |
+
21,68000,0
|
| 136 |
+
28,55000,0
|
| 137 |
+
23,63000,0
|
| 138 |
+
20,82000,0
|
| 139 |
+
30,107000,1
|
| 140 |
+
28,59000,0
|
| 141 |
+
19,25000,0
|
| 142 |
+
19,85000,0
|
| 143 |
+
18,68000,0
|
| 144 |
+
35,59000,0
|
| 145 |
+
30,89000,0
|
| 146 |
+
34,25000,0
|
| 147 |
+
24,89000,0
|
| 148 |
+
27,96000,1
|
| 149 |
+
41,30000,0
|
| 150 |
+
29,61000,0
|
| 151 |
+
20,74000,0
|
| 152 |
+
26,15000,0
|
| 153 |
+
41,45000,0
|
| 154 |
+
31,76000,0
|
| 155 |
+
36,50000,0
|
| 156 |
+
40,47000,0
|
| 157 |
+
31,15000,0
|
| 158 |
+
46,59000,0
|
| 159 |
+
29,75000,0
|
| 160 |
+
26,30000,0
|
| 161 |
+
32,135000,1
|
| 162 |
+
32,100000,1
|
| 163 |
+
25,90000,0
|
| 164 |
+
37,33000,0
|
| 165 |
+
35,38000,0
|
| 166 |
+
33,69000,0
|
| 167 |
+
18,86000,0
|
| 168 |
+
22,55000,0
|
| 169 |
+
35,71000,0
|
| 170 |
+
29,148000,1
|
| 171 |
+
29,47000,0
|
| 172 |
+
21,88000,0
|
| 173 |
+
34,115000,0
|
| 174 |
+
26,118000,0
|
| 175 |
+
34,43000,0
|
| 176 |
+
34,72000,0
|
| 177 |
+
23,28000,0
|
| 178 |
+
35,47000,0
|
| 179 |
+
25,22000,0
|
| 180 |
+
24,23000,0
|
| 181 |
+
31,34000,0
|
| 182 |
+
26,16000,0
|
| 183 |
+
31,71000,0
|
| 184 |
+
32,117000,1
|
| 185 |
+
33,43000,0
|
| 186 |
+
33,60000,0
|
| 187 |
+
31,66000,0
|
| 188 |
+
20,82000,0
|
| 189 |
+
33,41000,0
|
| 190 |
+
35,72000,0
|
| 191 |
+
28,32000,0
|
| 192 |
+
24,84000,0
|
| 193 |
+
19,26000,0
|
| 194 |
+
29,43000,0
|
| 195 |
+
19,70000,0
|
| 196 |
+
28,89000,0
|
| 197 |
+
34,43000,0
|
| 198 |
+
30,79000,0
|
| 199 |
+
20,36000,0
|
| 200 |
+
26,80000,0
|
| 201 |
+
35,22000,0
|
| 202 |
+
35,39000,0
|
| 203 |
+
49,74000,0
|
| 204 |
+
39,134000,1
|
| 205 |
+
41,71000,0
|
| 206 |
+
58,101000,1
|
| 207 |
+
47,47000,0
|
| 208 |
+
55,130000,1
|
| 209 |
+
52,114000,0
|
| 210 |
+
40,142000,1
|
| 211 |
+
46,22000,0
|
| 212 |
+
48,96000,1
|
| 213 |
+
52,150000,1
|
| 214 |
+
59,42000,0
|
| 215 |
+
35,58000,0
|
| 216 |
+
47,43000,0
|
| 217 |
+
60,108000,1
|
| 218 |
+
49,65000,0
|
| 219 |
+
40,78000,0
|
| 220 |
+
46,96000,0
|
| 221 |
+
59,143000,1
|
| 222 |
+
41,80000,0
|
| 223 |
+
35,91000,1
|
| 224 |
+
37,144000,1
|
| 225 |
+
60,102000,1
|
| 226 |
+
35,60000,0
|
| 227 |
+
37,53000,0
|
| 228 |
+
36,126000,1
|
| 229 |
+
56,133000,1
|
| 230 |
+
40,72000,0
|
| 231 |
+
42,80000,1
|
| 232 |
+
35,147000,1
|
| 233 |
+
39,42000,0
|
| 234 |
+
40,107000,1
|
| 235 |
+
49,86000,1
|
| 236 |
+
38,112000,0
|
| 237 |
+
46,79000,1
|
| 238 |
+
40,57000,0
|
| 239 |
+
37,80000,0
|
| 240 |
+
46,82000,0
|
| 241 |
+
53,143000,1
|
| 242 |
+
42,149000,1
|
| 243 |
+
38,59000,0
|
| 244 |
+
50,88000,1
|
| 245 |
+
56,104000,1
|
| 246 |
+
41,72000,0
|
| 247 |
+
51,146000,1
|
| 248 |
+
35,50000,0
|
| 249 |
+
57,122000,1
|
| 250 |
+
41,52000,0
|
| 251 |
+
35,97000,1
|
| 252 |
+
44,39000,0
|
| 253 |
+
37,52000,0
|
| 254 |
+
48,134000,1
|
| 255 |
+
37,146000,1
|
| 256 |
+
50,44000,0
|
| 257 |
+
52,90000,1
|
| 258 |
+
41,72000,0
|
| 259 |
+
40,57000,0
|
| 260 |
+
58,95000,1
|
| 261 |
+
45,131000,1
|
| 262 |
+
35,77000,0
|
| 263 |
+
36,144000,1
|
| 264 |
+
55,125000,1
|
| 265 |
+
35,72000,0
|
| 266 |
+
48,90000,1
|
| 267 |
+
42,108000,1
|
| 268 |
+
40,75000,0
|
| 269 |
+
37,74000,0
|
| 270 |
+
47,144000,1
|
| 271 |
+
40,61000,0
|
| 272 |
+
43,133000,0
|
| 273 |
+
59,76000,1
|
| 274 |
+
60,42000,1
|
| 275 |
+
39,106000,1
|
| 276 |
+
57,26000,1
|
| 277 |
+
57,74000,1
|
| 278 |
+
38,71000,0
|
| 279 |
+
49,88000,1
|
| 280 |
+
52,38000,1
|
| 281 |
+
50,36000,1
|
| 282 |
+
59,88000,1
|
| 283 |
+
35,61000,0
|
| 284 |
+
37,70000,1
|
| 285 |
+
52,21000,1
|
| 286 |
+
48,141000,0
|
| 287 |
+
37,93000,1
|
| 288 |
+
37,62000,0
|
| 289 |
+
48,138000,1
|
| 290 |
+
41,79000,0
|
| 291 |
+
37,78000,1
|
| 292 |
+
39,134000,1
|
| 293 |
+
49,89000,1
|
| 294 |
+
55,39000,1
|
| 295 |
+
37,77000,0
|
| 296 |
+
35,57000,0
|
| 297 |
+
36,63000,0
|
| 298 |
+
42,73000,1
|
| 299 |
+
43,112000,1
|
| 300 |
+
45,79000,0
|
| 301 |
+
46,117000,1
|
| 302 |
+
58,38000,1
|
| 303 |
+
48,74000,1
|
| 304 |
+
37,137000,1
|
| 305 |
+
37,79000,1
|
| 306 |
+
40,60000,0
|
| 307 |
+
42,54000,0
|
| 308 |
+
51,134000,0
|
| 309 |
+
47,113000,1
|
| 310 |
+
36,125000,1
|
| 311 |
+
38,50000,0
|
| 312 |
+
42,70000,0
|
| 313 |
+
39,96000,1
|
| 314 |
+
38,50000,0
|
| 315 |
+
49,141000,1
|
| 316 |
+
39,79000,0
|
| 317 |
+
39,75000,1
|
| 318 |
+
54,104000,1
|
| 319 |
+
35,55000,0
|
| 320 |
+
45,32000,1
|
| 321 |
+
36,60000,0
|
| 322 |
+
52,138000,1
|
| 323 |
+
53,82000,1
|
| 324 |
+
41,52000,0
|
| 325 |
+
48,30000,1
|
| 326 |
+
48,131000,1
|
| 327 |
+
41,60000,0
|
| 328 |
+
41,72000,0
|
| 329 |
+
42,75000,0
|
| 330 |
+
36,118000,1
|
| 331 |
+
47,107000,1
|
| 332 |
+
38,51000,0
|
| 333 |
+
48,119000,1
|
| 334 |
+
42,65000,0
|
| 335 |
+
40,65000,0
|
| 336 |
+
57,60000,1
|
| 337 |
+
36,54000,0
|
| 338 |
+
58,144000,1
|
| 339 |
+
35,79000,0
|
| 340 |
+
38,55000,0
|
| 341 |
+
39,122000,1
|
| 342 |
+
53,104000,1
|
| 343 |
+
35,75000,0
|
| 344 |
+
38,65000,0
|
| 345 |
+
47,51000,1
|
| 346 |
+
47,105000,1
|
| 347 |
+
41,63000,0
|
| 348 |
+
53,72000,1
|
| 349 |
+
54,108000,1
|
| 350 |
+
39,77000,0
|
| 351 |
+
38,61000,0
|
| 352 |
+
38,113000,1
|
| 353 |
+
37,75000,0
|
| 354 |
+
42,90000,1
|
| 355 |
+
37,57000,0
|
| 356 |
+
36,99000,1
|
| 357 |
+
60,34000,1
|
| 358 |
+
54,70000,1
|
| 359 |
+
41,72000,0
|
| 360 |
+
40,71000,1
|
| 361 |
+
42,54000,0
|
| 362 |
+
43,129000,1
|
| 363 |
+
53,34000,1
|
| 364 |
+
47,50000,1
|
| 365 |
+
42,79000,0
|
| 366 |
+
42,104000,1
|
| 367 |
+
59,29000,1
|
| 368 |
+
58,47000,1
|
| 369 |
+
46,88000,1
|
| 370 |
+
38,71000,0
|
| 371 |
+
54,26000,1
|
| 372 |
+
60,46000,1
|
| 373 |
+
60,83000,1
|
| 374 |
+
39,73000,0
|
| 375 |
+
59,130000,1
|
| 376 |
+
37,80000,0
|
| 377 |
+
46,32000,1
|
| 378 |
+
46,74000,0
|
| 379 |
+
42,53000,0
|
| 380 |
+
41,87000,1
|
| 381 |
+
58,23000,1
|
| 382 |
+
42,64000,0
|
| 383 |
+
48,33000,1
|
| 384 |
+
44,139000,1
|
| 385 |
+
49,28000,1
|
| 386 |
+
57,33000,1
|
| 387 |
+
56,60000,1
|
| 388 |
+
49,39000,1
|
| 389 |
+
39,71000,0
|
| 390 |
+
47,34000,1
|
| 391 |
+
48,35000,1
|
| 392 |
+
48,33000,1
|
| 393 |
+
47,23000,1
|
| 394 |
+
45,45000,1
|
| 395 |
+
60,42000,1
|
| 396 |
+
39,59000,0
|
| 397 |
+
46,41000,1
|
| 398 |
+
51,23000,1
|
| 399 |
+
50,20000,1
|
| 400 |
+
36,33000,0
|
| 401 |
+
49,36000,1
|
logistic_regression.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Logistic Regression
|
| 2 |
+
|
| 3 |
+
# Importing the libraries
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Importing the dataset
|
| 9 |
+
dataset = pd.read_csv('Social_Network_Ads.csv')
|
| 10 |
+
X = dataset.iloc[:, :-1].values
|
| 11 |
+
y = dataset.iloc[:, -1].values
|
| 12 |
+
|
| 13 |
+
# Splitting the dataset into the Training set and Test set
|
| 14 |
+
from sklearn.model_selection import train_test_split
|
| 15 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
| 16 |
+
print(X_train)
|
| 17 |
+
print(y_train)
|
| 18 |
+
print(X_test)
|
| 19 |
+
print(y_test)
|
| 20 |
+
|
| 21 |
+
# Feature Scaling
|
| 22 |
+
from sklearn.preprocessing import StandardScaler
|
| 23 |
+
sc = StandardScaler()
|
| 24 |
+
X_train = sc.fit_transform(X_train)
|
| 25 |
+
X_test = sc.transform(X_test)
|
| 26 |
+
print(X_train)
|
| 27 |
+
print(X_test)
|
| 28 |
+
|
| 29 |
+
# Training the Logistic Regression model on the Training set
|
| 30 |
+
from sklearn.linear_model import LogisticRegression
|
| 31 |
+
classifier = LogisticRegression(random_state = 0)
|
| 32 |
+
classifier.fit(X_train, y_train)
|
| 33 |
+
|
| 34 |
+
# Predicting a new result
|
| 35 |
+
print(classifier.predict(sc.transform([[30,87000]])))
|
| 36 |
+
|
| 37 |
+
# Predicting the Test set results
|
| 38 |
+
y_pred = classifier.predict(X_test)
|
| 39 |
+
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
|
| 40 |
+
|
| 41 |
+
# Making the Confusion Matrix
|
| 42 |
+
from sklearn.metrics import confusion_matrix, accuracy_score
|
| 43 |
+
cm = confusion_matrix(y_test, y_pred)
|
| 44 |
+
print(cm)
|
| 45 |
+
accuracy_score(y_test, y_pred)
|
| 46 |
+
|
| 47 |
+
# Visualising the Training set results
|
| 48 |
+
from matplotlib.colors import ListedColormap
|
| 49 |
+
X_set, y_set = sc.inverse_transform(X_train), y_train
|
| 50 |
+
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
|
| 51 |
+
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
|
| 52 |
+
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
|
| 53 |
+
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
|
| 54 |
+
plt.xlim(X1.min(), X1.max())
|
| 55 |
+
plt.ylim(X2.min(), X2.max())
|
| 56 |
+
for i, j in enumerate(np.unique(y_set)):
|
| 57 |
+
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j)
|
| 58 |
+
plt.title('Logistic Regression (Training set)')
|
| 59 |
+
plt.xlabel('Age')
|
| 60 |
+
plt.ylabel('Estimated Salary')
|
| 61 |
+
plt.legend()
|
| 62 |
+
plt.show()
|
| 63 |
+
|
| 64 |
+
# Visualising the Test set results
|
| 65 |
+
from matplotlib.colors import ListedColormap
|
| 66 |
+
X_set, y_set = sc.inverse_transform(X_test), y_test
|
| 67 |
+
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
|
| 68 |
+
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
|
| 69 |
+
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
|
| 70 |
+
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
|
| 71 |
+
plt.xlim(X1.min(), X1.max())
|
| 72 |
+
plt.ylim(X2.min(), X2.max())
|
| 73 |
+
for i, j in enumerate(np.unique(y_set)):
|
| 74 |
+
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j)
|
| 75 |
+
plt.title('Logistic Regression (Test set)')
|
| 76 |
+
plt.xlabel('Age')
|
| 77 |
+
plt.ylabel('Estimated Salary')
|
| 78 |
+
plt.legend()
|
| 79 |
+
plt.show()
|