Spaces:
Runtime error
Runtime error
Sagar
commited on
Commit
·
6e14a9e
1
Parent(s):
21a04b0
Updated Code
Browse files
app.py
CHANGED
@@ -5,29 +5,19 @@ from sklearn.linear_model import LinearRegression
|
|
5 |
import gradio as gr
|
6 |
|
7 |
df=pd.read_csv("mexican_medical_students_mental_health_data.csv")
|
8 |
-
|
9 |
df.head()
|
10 |
df.info
|
11 |
-
|
12 |
target=df.iloc[:,19:27].sum(axis=1)
|
13 |
-
|
14 |
df.insert(43,"gad_total",target)
|
15 |
-
|
16 |
df.head()
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
df.nunique()
|
21 |
-
|
22 |
-
|
23 |
-
df.isna().sum()
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
h_mean=df["height"].mean()
|
28 |
w_mean=df["weight"].mean()
|
29 |
age_mean=df["age"].mean()
|
30 |
g_mode=df["gender"].mode()[0]
|
|
|
|
|
31 |
p1=df["phq1"].mode()[0]
|
32 |
p2=df["phq2"].mode()[0]
|
33 |
p3=df["phq3"].mode()[0]
|
@@ -37,12 +27,7 @@ p6=df["phq6"].mode()[0]
|
|
37 |
p7=df["phq7"].mode()[0]
|
38 |
p8=df["phq8"].mode()[0]
|
39 |
p9=df["phq9"].mode()[0]
|
40 |
-
|
41 |
-
|
42 |
-
p5
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
df["height"].fillna(h_mean,inplace=True)
|
47 |
df["weight"].fillna(w_mean,inplace=True)
|
48 |
df["age"].fillna(age_mean,inplace=True)
|
@@ -56,11 +41,26 @@ df["phq6"].fillna(p6,inplace=True)
|
|
56 |
df["phq7"].fillna(p7,inplace=True)
|
57 |
df["phq8"].fillna(p8,inplace=True)
|
58 |
df["phq9"].fillna(p9,inplace=True)
|
|
|
|
|
59 |
|
60 |
df.isna().sum()
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
from sklearn import preprocessing
|
66 |
le= preprocessing.LabelEncoder()
|
@@ -68,36 +68,30 @@ df["gender"]=le.fit_transform(df["gender"])
|
|
68 |
df.head()
|
69 |
|
70 |
|
71 |
-
|
72 |
-
y=df["gad_total"]
|
73 |
|
74 |
|
|
|
|
|
75 |
|
76 |
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=21)
|
77 |
|
78 |
-
|
79 |
model=LinearRegression()
|
80 |
|
81 |
-
|
82 |
-
|
83 |
model.fit(X_train,y_train)
|
84 |
print("Training complete.")
|
85 |
|
86 |
-
|
87 |
-
|
88 |
r2_score=model.score(X_test,y_test)
|
89 |
print(r2_score*100,"%")
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
def greet(name):
|
100 |
-
return "Hello " + name + "!!"
|
101 |
|
102 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
103 |
-
iface.launch()
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
df=pd.read_csv("mexican_medical_students_mental_health_data.csv")
|
|
|
8 |
df.head()
|
9 |
df.info
|
|
|
10 |
target=df.iloc[:,19:27].sum(axis=1)
|
|
|
11 |
df.insert(43,"gad_total",target)
|
|
|
12 |
df.head()
|
13 |
+
df.nunique() #Checking the number of unique values for primary keys or constants
|
14 |
+
df.isna().sum()#Missing values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
h_mean=df["height"].mean()
|
16 |
w_mean=df["weight"].mean()
|
17 |
age_mean=df["age"].mean()
|
18 |
g_mode=df["gender"].mode()[0]
|
19 |
+
r_mode=df["reported_sleep_hours"].mode()[0]
|
20 |
+
n_mode=df["nap_duration"].mode()[0]
|
21 |
p1=df["phq1"].mode()[0]
|
22 |
p2=df["phq2"].mode()[0]
|
23 |
p3=df["phq3"].mode()[0]
|
|
|
27 |
p7=df["phq7"].mode()[0]
|
28 |
p8=df["phq8"].mode()[0]
|
29 |
p9=df["phq9"].mode()[0]
|
30 |
+
r_mode
|
|
|
|
|
|
|
|
|
|
|
31 |
df["height"].fillna(h_mean,inplace=True)
|
32 |
df["weight"].fillna(w_mean,inplace=True)
|
33 |
df["age"].fillna(age_mean,inplace=True)
|
|
|
41 |
df["phq7"].fillna(p7,inplace=True)
|
42 |
df["phq8"].fillna(p8,inplace=True)
|
43 |
df["phq9"].fillna(p9,inplace=True)
|
44 |
+
df["reported_sleep_hours"].fillna(r_mode,inplace=True)
|
45 |
+
df["nap_duration"].fillna(n_mode,inplace=True)
|
46 |
|
47 |
df.isna().sum()
|
48 |
|
49 |
+
import datetime
|
50 |
+
new=[]
|
51 |
+
for i in range(len(df["reported_sleep_hours"])):
|
52 |
+
con=datetime.datetime.strptime(str(df["reported_sleep_hours"][i]),"%H:%M")
|
53 |
+
t=float(con.minute/60)
|
54 |
+
tot=float(con.hour)+t
|
55 |
+
new.append(tot)
|
56 |
+
df.insert(44,"reported_sleep_in_hours",new)
|
57 |
+
new=[]
|
58 |
+
for i in range(len(df["nap_duration"])):
|
59 |
+
con=datetime.datetime.strptime(str(df["nap_duration"][i]),"%H:%M")
|
60 |
+
t=float(con.minute/60)
|
61 |
+
tot=float(con.hour)+t
|
62 |
+
new.append(tot)
|
63 |
+
df.insert(45,"nap_duration_hours",new)
|
64 |
|
65 |
from sklearn import preprocessing
|
66 |
le= preprocessing.LabelEncoder()
|
|
|
68 |
df.head()
|
69 |
|
70 |
|
71 |
+
# In[22]:
|
|
|
72 |
|
73 |
|
74 |
+
X=df[["age","gender","height","weight","phq1","phq2","phq3","phq4","phq5","phq6","phq7","phq8","phq9","reported_sleep_in_hours","nap_duration_hours"]]
|
75 |
+
y=df["gad_total"]
|
76 |
|
77 |
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=21)
|
78 |
|
|
|
79 |
model=LinearRegression()
|
80 |
|
|
|
|
|
81 |
model.fit(X_train,y_train)
|
82 |
print("Training complete.")
|
83 |
|
|
|
|
|
84 |
r2_score=model.score(X_test,y_test)
|
85 |
print(r2_score*100,"%")
|
86 |
|
87 |
+
y_pred = model.predict(X_test)
|
88 |
+
print('Coefficients: \n', model.coef_)
|
89 |
+
print("Mean squared error: %.2f" % np.mean((model.predict(X_test) - y_test) ** 2))
|
90 |
|
91 |
+
def greet(input):
|
92 |
+
temp= input.split(",")
|
93 |
+
y = model.predict([[temp[0],temp[1],temp[2],temp[3],temp[4],temp[5],temp[6],temp[7],temp[8],temp[9],temp[10],temp[11],temp[12],temp[13],temp[14],temp[15]]])
|
94 |
+
y = str(y)
|
95 |
+
return y
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text").launch(share=True)
|
|