Sagar commited on
Commit
804bce3
·
1 Parent(s): 8364b94

Updated Code

Browse files
Files changed (1) hide show
  1. app.py +29 -3
app.py CHANGED
@@ -66,7 +66,7 @@ from sklearn import preprocessing
66
  le= preprocessing.LabelEncoder()
67
  df["gender"]=le.fit_transform(df["gender"])
68
  df.head()
69
-
70
 
71
  # In[22]:
72
 
@@ -88,11 +88,37 @@ y_pred = model.predict(X_test)
88
  print('Coefficients: \n', model.coef_)
89
  print("Mean squared error: %.2f" % np.mean((model.predict(X_test) - y_test) ** 2))
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  def greet(input):
92
  temp =np.array(input.split(","), dtype=float)
93
  y = model.predict([[temp[0],temp[1],temp[2],temp[3],temp[4],temp[5],temp[6],temp[7],temp[8],temp[9],temp[10],temp[11],temp[12],temp[13],temp[14]]])
94
- y = str(y)
95
- return y
96
 
97
  textbox_x = gr.Textbox(label="Variable X:", placeholder="10", lines=1)
98
  textbox_y = gr.Textbox(label="Variable Y:", placeholder ="11", lines=1)
 
66
  le= preprocessing.LabelEncoder()
67
  df["gender"]=le.fit_transform(df["gender"])
68
  df.head()
69
+ df.insert(44,"epw_total",target)
70
 
71
  # In[22]:
72
 
 
88
  print('Coefficients: \n', model.coef_)
89
  print("Mean squared error: %.2f" % np.mean((model.predict(X_test) - y_test) ** 2))
90
 
91
+ #epw
92
+ X=df[["age","gender","height","weight","phq1","phq2","phq3","phq4","phq5","phq6","phq7","phq8","phq9","reported_sleep_in_hours","nap_duration_hours"]]
93
+ y=df["epw_total"]
94
+
95
+ X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.15,random_state=21)
96
+
97
+ modelepw=LinearRegression()
98
+ modelepw.fit(X_train,y_train)
99
+ print("Training complete.")
100
+
101
+
102
+ # In[79]:
103
+
104
+
105
+ r2_score=modelepw.score(X_test,y_test)
106
+ print(r2_score*100,"%")
107
+
108
+
109
+ # In[80]:
110
+
111
+
112
+ y_pred = modelepw.predict(X_test)
113
+ print('Coefficients: \n', modelepw.coef_)
114
+ # The mean squared error
115
+ print("Mean squared error: %.2f" % np.mean((modelepw.predict(X_test) - y_test) ** 2))
116
+
117
  def greet(input):
118
  temp =np.array(input.split(","), dtype=float)
119
  y = model.predict([[temp[0],temp[1],temp[2],temp[3],temp[4],temp[5],temp[6],temp[7],temp[8],temp[9],temp[10],temp[11],temp[12],temp[13],temp[14]]])
120
+ z = modelepw.predict([[temp[0],temp[1],temp[2],temp[3],temp[4],temp[5],temp[6],temp[7],temp[8],temp[9],temp[10],temp[11],temp[12],temp[13],temp[14]]])
121
+ return str(y,",",z)
122
 
123
  textbox_x = gr.Textbox(label="Variable X:", placeholder="10", lines=1)
124
  textbox_y = gr.Textbox(label="Variable Y:", placeholder ="11", lines=1)