import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import gradio as gr df=pd.read_csv("mexican_medical_students_mental_health_data.csv") df.head() df.info target=df.iloc[:,19:27].sum(axis=1) df.insert(43,"gad_total",target) df.head() df.nunique() df.isna().sum() h_mean=df["height"].mean() w_mean=df["weight"].mean() age_mean=df["age"].mean() g_mode=df["gender"].mode()[0] p1=df["phq1"].mode()[0] p2=df["phq2"].mode()[0] p3=df["phq3"].mode()[0] p4=df["phq4"].mode()[0] p5=df["phq5"].mode()[0] p6=df["phq6"].mode()[0] p7=df["phq7"].mode()[0] p8=df["phq8"].mode()[0] p9=df["phq9"].mode()[0] p5 df["height"].fillna(h_mean,inplace=True) df["weight"].fillna(w_mean,inplace=True) df["age"].fillna(age_mean,inplace=True) df["gender"].fillna(g_mode,inplace=True) df["phq1"].fillna(p1,inplace=True) df["phq2"].fillna(p2,inplace=True) df["phq3"].fillna(p3,inplace=True) df["phq4"].fillna(p4,inplace=True) df["phq5"].fillna(p5,inplace=True) df["phq6"].fillna(p6,inplace=True) df["phq7"].fillna(p7,inplace=True) df["phq8"].fillna(p8,inplace=True) df["phq9"].fillna(p9,inplace=True) df.isna().sum() df["reported_sleep_hours"][0] from sklearn import preprocessing le= preprocessing.LabelEncoder() df["gender"]=le.fit_transform(df["gender"]) df.head() X=df[["age","gender","height","weight","phq1","phq2","phq3","phq4","phq5","phq6","phq7","phq8","phq9"]] y=df["gad_total"] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=21) model=LinearRegression() model.fit(X_train,y_train) print("Training complete.") r2_score=model.score(X_test,y_test) print(r2_score*100,"%") df["gad_total"].max() df["gad_total"] def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()