File size: 4,872 Bytes
c981325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ed4e8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from PIL import Image
from transformers import ViTFeatureExtractor, ViTForImageClassification
import warnings
import requests
import gradio as gr
from dotenv import load_dotenv
import os

load_dotenv()  # Load .env file
# API key for the nutrition information
api_key =os.getenv("API_KEY")


warnings.filterwarnings('ignore')

# Load the pre-trained Vision Transformer model and feature extractor
model_name = "google/vit-base-patch16-224"
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)


examples = [
    ["data/apple.jpg"],  # Path to example images
    ["data/banana.jpg"],
    ["data/pizza.png"],
    ["data/burger.png"],
    ["data/grapes.jpeg"],
    ["data/fries.jpeg"],
]


def identify_image(image_path):
    """Identify the food item in the image."""
    image = Image.open(image_path)
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_label = model.config.id2label[predicted_class_idx]
    food_name = predicted_label.split(',')[0]
    return food_name

def get_calories(food_name):
    """Get the calorie information of the identified food item."""
    api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name)
    response = requests.get(api_url, headers={'X-Api-Key': api_key})
    if response.status_code == requests.codes.ok:
        nutrition_info = response.json()
    else:
        nutrition_info = {"Error": response.status_code, "Message": response.text}
    return nutrition_info

def format_nutrition_info(nutrition_info):
    """Format the nutritional information into an HTML table."""
    if "Error" in nutrition_info:
        return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
    
    if len(nutrition_info) == 0:
        return "No nutritional information found."

    nutrition_data = nutrition_info[0]
    table = f"""
    <table border="1" style="width: 100%; border-collapse: collapse;">
        <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
        <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
        <tr>
            <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
            <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
            <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
            <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
            <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
            <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
            <td></td><td></td>
        </tr>
    </table>
    """
    return table

def main_process(image_path):
    """Identify the food item and fetch its calorie information."""
    food_name = identify_image(image_path)
    nutrition_info = get_calories(food_name)
    formatted_nutrition_info = format_nutrition_info(nutrition_info)
    return formatted_nutrition_info

# Define the Gradio interface
def gradio_interface(image):
    formatted_nutrition_info = main_process(image)
    return formatted_nutrition_info

# Create the Gradio UI
iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Image(type="filepath"),
    outputs="html",
    title="Food Identification and Nutrition Info",
    description="Upload an image of food to get nutritional information.",
    examples=examples,  # Add examples
    allow_flagging="never"  # Disable flagging
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch(share=True)