Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from fastai.vision.all import * | |
import gradio as gr | |
examples = [ | |
["project/WBC-Benign-017.jpg"], # Replace with the actual paths to your images | |
["project/WBC-Benign-030.jpg"], | |
["project/WBC-Malignant-Early-027.jpg"], | |
["project/WBC-Malignant-Pre-019.jpg"], | |
["project/WBC-Malignant-Pro-027.jpg"] | |
] | |
# Correctly format the path for Windows | |
model_path = Path(r'efficientnet_b3_model.pkl') | |
# Load the model | |
learn = load_learner(model_path, cpu=True) | |
# Define the prediction function | |
def classify_image(image): | |
pred, idx, probs = learn.predict(image) | |
return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))} | |
# Set up the Gradio interface | |
interface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3), | |
title="EfficientNet B3 Image Classifier", | |
examples= examples, | |
description="Upload an image to classify using the trained EfficientNet B3 model.", | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch(share=True) | |