Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from fastai.vision.all import *
|
3 |
-
# import timm
|
4 |
-
|
5 |
-
# # Load the exported model
|
6 |
-
# learn = load_learner('./efficientnet_b3_model.pkl', cpu=True) # Using cpu=True for compatibility
|
7 |
-
|
8 |
-
# learn.export('./efficientnet_b3_model.pkl') # export_model(learn, 'efficientnet_b3_model.pkl')
|
9 |
-
|
10 |
-
|
11 |
-
# # Define the prediction function
|
12 |
-
# def classify_image(image):
|
13 |
-
# pred, idx, probs = learn.predict(image)
|
14 |
-
# # Return the top 3 predictions with their probabilities
|
15 |
-
# return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))}
|
16 |
-
|
17 |
-
# # Set up the Gradio interface
|
18 |
-
# interface = gr.Interface(
|
19 |
-
# fn=classify_image, # Function to make predictions
|
20 |
-
# inputs=gr.Image(type="pil"), # Input as an image in PIL format
|
21 |
-
# outputs=gr.Label(num_top_classes=3), # Output shows top 3 predicted classes
|
22 |
-
# title="EfficientNet B3 Image Classifier",
|
23 |
-
# description="Upload an image to classify using the trained EfficientNet B3 model."
|
24 |
-
# )
|
25 |
-
|
26 |
-
# # Launch the Gradio app
|
27 |
-
# if __name__ == "__main__":
|
28 |
-
# interface.launch(share=True) # `share=True` makes the app publicly accessible
|
29 |
-
|
30 |
from pathlib import Path
|
31 |
from fastai.vision.all import *
|
32 |
import gradio as gr
|
@@ -46,10 +17,7 @@ def classify_image(image):
|
|
46 |
interface = gr.Interface(
|
47 |
fn=classify_image,
|
48 |
inputs=gr.Image(type="pil"),
|
49 |
-
outputs=
|
50 |
-
gr.Label(num_top_classes=3),
|
51 |
-
gr.Textbox(value="The prediction results above represent the top 3 cancer stages."),
|
52 |
-
],
|
53 |
title="EfficientNet B3 Image Classifier",
|
54 |
description="Upload an image to classify using the trained EfficientNet B3 model."
|
55 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
from fastai.vision.all import *
|
3 |
import gradio as gr
|
|
|
17 |
interface = gr.Interface(
|
18 |
fn=classify_image,
|
19 |
inputs=gr.Image(type="pil"),
|
20 |
+
outputs=gr.Label(num_top_classes=3),
|
|
|
|
|
|
|
21 |
title="EfficientNet B3 Image Classifier",
|
22 |
description="Upload an image to classify using the trained EfficientNet B3 model."
|
23 |
)
|