Spaces:
Running
Running
from dotenv import load_dotenv,find_dotenv | |
from transformers import pipeline | |
import os | |
load_dotenv(find_dotenv()) | |
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
import faiss | |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
directory_path = "data" # Path to the directory containing your PDF files | |
loader = DirectoryLoader(directory_path, glob="./*.pdf", loader_cls=PyPDFLoader) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200) | |
texts = text_splitter.split_documents(documents) | |
# Create a SentenceTransformer object | |
embeddings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1-ablated",model_kwargs={"trust_remote_code":True}) | |
db = FAISS.from_documents(texts, embeddings) | |
db.save_local("gym_vector_db") |