Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import moviepy.editor as mp
|
5 |
+
from transformers import (
|
6 |
+
ViTImageProcessor,
|
7 |
+
ViTForImageClassification,
|
8 |
+
pipeline
|
9 |
+
)
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# 1. Load Models
|
13 |
+
@st.cache_resource
|
14 |
+
def load_models():
|
15 |
+
# Visual model
|
16 |
+
vit_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
|
17 |
+
vit_model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
18 |
+
|
19 |
+
# Audio model
|
20 |
+
audio_analyzer = pipeline(
|
21 |
+
"audio-classification",
|
22 |
+
model="speechbrain/emotion-recognition-wav2vec2-IEMOCAP"
|
23 |
+
)
|
24 |
+
return vit_processor, vit_model, audio_analyzer
|
25 |
+
|
26 |
+
# 2. Processing Functions
|
27 |
+
def analyze_frame(frame, processor, model):
|
28 |
+
inputs = processor(images=frame, return_tensors="pt")
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**inputs)
|
31 |
+
return model.config.id2label[outputs.logits.argmax(-1).item()]
|
32 |
+
|
33 |
+
def process_video(video_path, processor, model, audio_analyzer):
|
34 |
+
# Extract audio
|
35 |
+
video = mp.VideoFileClip(video_path)
|
36 |
+
audio_path = "temp_audio.wav"
|
37 |
+
video.audio.write_audiofile(audio_path)
|
38 |
+
|
39 |
+
# Analyze audio
|
40 |
+
audio_result = audio_analyzer(audio_path)
|
41 |
+
audio_emotion = max(audio_result, key=lambda x: x['score'])['label']
|
42 |
+
|
43 |
+
# Analyze video frames
|
44 |
+
cap = cv2.VideoCapture(video_path)
|
45 |
+
emotions = []
|
46 |
+
|
47 |
+
while cap.isOpened():
|
48 |
+
ret, frame = cap.read()
|
49 |
+
if not ret: break
|
50 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
51 |
+
emotions.append(analyze_frame(frame, processor, model))
|
52 |
+
|
53 |
+
cap.release()
|
54 |
+
return {
|
55 |
+
'audio': audio_emotion,
|
56 |
+
'visual': max(set(emotions), key=emotions.count)
|
57 |
+
}
|
58 |
+
|
59 |
+
# 3. Streamlit UI
|
60 |
+
st.title("Video Sentiment Analyzer 🎥")
|
61 |
+
st.markdown("""
|
62 |
+
Analyze emotions from:
|
63 |
+
- Facial expressions (ViT model)
|
64 |
+
- Audio tone (wav2vec2 model)
|
65 |
+
""")
|
66 |
+
|
67 |
+
uploaded_file = st.file_uploader("Upload video (max 200MB)", type=["mp4", "avi"])
|
68 |
+
|
69 |
+
if uploaded_file:
|
70 |
+
# Save to temp file
|
71 |
+
with open("temp_video.mp4", "wb") as f:
|
72 |
+
f.write(uploaded_file.getbuffer())
|
73 |
+
|
74 |
+
# Load models
|
75 |
+
vit_processor, vit_model, audio_analyzer = load_models()
|
76 |
+
|
77 |
+
# Process video
|
78 |
+
with st.spinner("Analyzing video..."):
|
79 |
+
result = process_video(
|
80 |
+
"temp_video.mp4",
|
81 |
+
vit_processor,
|
82 |
+
vit_model,
|
83 |
+
audio_analyzer
|
84 |
+
)
|
85 |
+
|
86 |
+
# Display results
|
87 |
+
col1, col2 = st.columns(2)
|
88 |
+
with col1:
|
89 |
+
st.subheader("🎧 Audio Analysis")
|
90 |
+
st.metric("Emotion", result['audio'])
|
91 |
+
|
92 |
+
with col2:
|
93 |
+
st.subheader("👁️ Visual Analysis")
|
94 |
+
st.metric("Dominant Emotion", result['visual'])
|
95 |
+
|
96 |
+
st.success("Analysis complete!")
|