Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,163 +1,326 @@
|
|
1 |
-
import torch
|
2 |
-
import torchaudio
|
3 |
import cv2
|
4 |
-
import
|
|
|
5 |
import numpy as np
|
6 |
-
import gradio as gr
|
7 |
import matplotlib.pyplot as plt
|
8 |
-
|
9 |
-
from
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
while cap.isOpened():
|
41 |
ret, frame = cap.read()
|
42 |
if not ret:
|
43 |
break
|
44 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
45 |
-
frames.append(frame)
|
46 |
-
|
47 |
-
cap.release()
|
48 |
-
return frames[::interval] # Process every nth frame
|
49 |
-
|
50 |
-
# --- Normalize Emotion Percentages to 100% ---
|
51 |
-
def normalize_emotion_percentages(emotion_counts):
|
52 |
-
print("Raw emotion counts:", emotion_counts) # Debugging
|
53 |
-
total = sum(emotion_counts.values())
|
54 |
-
if total > 0:
|
55 |
-
normalized_counts = {k: round((v / total) * 100, 1) for k, v in emotion_counts.items()}
|
56 |
-
|
57 |
-
# Adjust the highest emotion to ensure total = 100%
|
58 |
-
total_after = sum(normalized_counts.values())
|
59 |
-
if total_after != 100:
|
60 |
-
diff = 100 - total_after
|
61 |
-
max_emotion = max(normalized_counts, key=normalized_counts.get)
|
62 |
-
normalized_counts[max_emotion] += diff
|
63 |
-
|
64 |
-
print("Normalized emotion counts:", normalized_counts) # Debugging
|
65 |
-
return normalized_counts
|
66 |
-
else:
|
67 |
-
return {k: 0 for k in emotion_counts}
|
68 |
-
|
69 |
-
# --- Facial Emotion Analysis ---
|
70 |
-
def analyze_facial_emotion(frames):
|
71 |
-
emotion_counts = {key: 0 for key in emotion_labels.values()}
|
72 |
-
|
73 |
-
for frame in frames:
|
74 |
-
try:
|
75 |
-
result = DeepFace.analyze(frame, actions=["emotion"], enforce_detection=False)
|
76 |
-
detected_emotion = result[0]["dominant_emotion"].capitalize()
|
77 |
-
print("Detected emotion:", detected_emotion) # Debugging
|
78 |
-
if detected_emotion in emotion_counts:
|
79 |
-
emotion_counts[detected_emotion] += 1
|
80 |
-
except Exception:
|
81 |
-
continue
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
#
|
86 |
-
|
87 |
-
speech, sr = librosa.load(audio_path, sr=16000)
|
88 |
-
input_values = asr_processor(speech, return_tensors="pt", sampling_rate=16000).input_values
|
89 |
-
|
90 |
-
with torch.no_grad():
|
91 |
-
logits = asr_model(input_values).logits
|
92 |
-
|
93 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
94 |
-
return asr_processor.batch_decode(predicted_ids)[0]
|
95 |
-
|
96 |
-
# --- Sentiment Analysis from Text ---
|
97 |
-
def analyze_audio_emotion(text):
|
98 |
-
inputs = emotion_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
99 |
-
with torch.no_grad():
|
100 |
-
logits = emotion_model(**inputs).logits
|
101 |
-
|
102 |
-
probabilities = torch.nn.functional.softmax(logits, dim=-1).squeeze().tolist()
|
103 |
-
predicted_emotion = emotion_labels[torch.argmax(logits, dim=-1).item()]
|
104 |
-
|
105 |
-
return predicted_emotion, probabilities
|
106 |
-
|
107 |
-
# --- Full Analysis Pipeline ---
|
108 |
-
def analyze_video(video_path):
|
109 |
-
# Extract Audio from Video
|
110 |
-
audio_path = extract_audio(video_path)
|
111 |
-
|
112 |
-
# Extract Frames for Facial & Posture Analysis
|
113 |
-
frames = extract_frames(video_path)
|
114 |
-
|
115 |
-
# Facial Emotion Analysis
|
116 |
-
facial_emotions = analyze_facial_emotion(frames)
|
117 |
-
|
118 |
-
# Audio Analysis
|
119 |
-
transcription = transcribe_audio(audio_path)
|
120 |
-
audio_emotion, audio_probabilities = analyze_audio_emotion(transcription)
|
121 |
-
|
122 |
-
# Combine Emotion Scores
|
123 |
-
final_emotion = max(facial_emotions, key=facial_emotions.get) if facial_emotions else "Neutral"
|
124 |
-
|
125 |
-
# Display Emotion Pie Chart
|
126 |
-
plt.figure(figsize=(5, 5))
|
127 |
-
plt.pie(facial_emotions.values(), labels=facial_emotions.keys(), autopct="%1.1f%%", colors=plt.cm.Paired.colors)
|
128 |
-
plt.title("Facial Emotion Distribution")
|
129 |
-
plt.savefig("emotion_pie_chart.png")
|
130 |
-
|
131 |
-
return (
|
132 |
-
transcription,
|
133 |
-
audio_emotion,
|
134 |
-
final_emotion,
|
135 |
-
facial_emotions,
|
136 |
-
"emotion_pie_chart.png"
|
137 |
-
)
|
138 |
-
|
139 |
-
# --- Gradio UI ---
|
140 |
-
theme_css = """
|
141 |
-
body { font-family: Arial, sans-serif; background: #f4f4f4; }
|
142 |
-
.gradio-container { max-width: 800px; margin: auto; padding: 20px; background: white; border-radius: 10px; box-shadow: 0 0 10px rgba(0,0,0,0.1); }
|
143 |
-
.gr-box { border-radius: 10px; padding: 15px; background: #fff; }
|
144 |
-
h1 { color: #333; text-align: center; }
|
145 |
-
"""
|
146 |
-
|
147 |
-
interface = gr.Interface(
|
148 |
-
fn=analyze_video,
|
149 |
-
inputs=gr.Video(),
|
150 |
-
outputs=[
|
151 |
-
gr.Textbox(label="Transcribed Speech"),
|
152 |
-
gr.Textbox(label="Predicted Audio Emotion"),
|
153 |
-
gr.Textbox(label="Major Detected Emotion (Face + Posture)"),
|
154 |
-
gr.Label(label="Facial Emotion Distribution"),
|
155 |
-
gr.Image(label="Facial Emotion Pie Chart"),
|
156 |
-
],
|
157 |
-
title="🎭 Multi-Modal Emotion Analysis",
|
158 |
-
description="📌 Upload a video and get analyzed emotions from **facial expressions, posture, and voice** in one step.\n\n🚀 Features:\n- Facial Emotion Analysis\n- Audio-Based Sentiment Detection\n- Real-Time Processing\n- Visual Pie Chart Representation",
|
159 |
-
theme="compact",
|
160 |
-
css=theme_css
|
161 |
-
)
|
162 |
-
|
163 |
-
interface.launch()
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
import torch
|
4 |
import numpy as np
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
from facenet_pytorch import MTCNN
|
8 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, AutoProcessor, AutoModelForAudioClassification
|
9 |
+
from PIL import Image
|
10 |
+
import moviepy.editor as moviepy
|
11 |
+
import librosa
|
12 |
+
import os
|
13 |
+
|
14 |
+
# Initialize device
|
15 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
|
17 |
+
# Initialize visual models
|
18 |
+
mp_pose = mp.solutions.pose
|
19 |
+
pose = mp_pose.Pose()
|
20 |
+
mtcnn = MTCNN(device=device)
|
21 |
+
face_model = AutoModelForImageClassification.from_pretrained("trpakov/vit-face-expression").to(device)
|
22 |
+
face_extractor = AutoFeatureExtractor.from_pretrained("trpakov/vit-face-expression")
|
23 |
+
|
24 |
+
# Initialize audio model
|
25 |
+
audio_model_name = "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
26 |
+
audio_processor = AutoProcessor.from_pretrained(audio_model_name)
|
27 |
+
audio_model = AutoModelForAudioClassification.from_pretrained(audio_model_name).to(device)
|
28 |
+
audio_sampling_rate = 16000
|
29 |
+
|
30 |
+
def calculate_angle(a, b, c):
|
31 |
+
"""Calculates the angle between three points."""
|
32 |
+
a, b, c = np.array(a), np.array(b), np.array(c)
|
33 |
+
ba, bc = a - b, c - b
|
34 |
+
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
|
35 |
+
return np.degrees(np.arccos(np.clip(cosine_angle, -1.0, 1.0)))
|
36 |
+
|
37 |
+
def detect_emotions(frame):
|
38 |
+
"""Detects facial emotions in a given frame."""
|
39 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
40 |
+
faces, _ = mtcnn.detect(img)
|
41 |
+
|
42 |
+
if faces is None or len(faces) == 0:
|
43 |
+
return "Neutral" # Default to neutral if no face is detected
|
44 |
+
|
45 |
+
face = img.crop(faces[0])
|
46 |
+
inputs = face_extractor(images=face, return_tensors="pt").to(device)
|
47 |
+
outputs = face_model(**inputs)
|
48 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
49 |
+
return face_model.config.id2label[torch.argmax(probs).item()]
|
50 |
+
|
51 |
+
def classify_posture(back_angle, neck_angle):
|
52 |
+
"""Classifies posture based on back and neck angles."""
|
53 |
+
if back_angle > 170 and neck_angle > 150:
|
54 |
+
return "Confident"
|
55 |
+
elif back_angle < 160 and neck_angle < 140:
|
56 |
+
return "Nervous"
|
57 |
+
elif back_angle < 150:
|
58 |
+
return "Defensive"
|
59 |
+
elif neck_angle < 130:
|
60 |
+
return "Serious"
|
61 |
+
else:
|
62 |
+
return "Attentive"
|
63 |
+
|
64 |
+
def extract_audio(video_path):
|
65 |
+
"""Extracts audio from video file and saves it as WAV."""
|
66 |
+
audio_path = "extracted_audio.wav"
|
67 |
+
video = moviepy.VideoFileClip(video_path)
|
68 |
+
video.audio.write_audiofile(audio_path, codec='pcm_s16le', verbose=False)
|
69 |
+
return audio_path
|
70 |
+
|
71 |
+
def analyze_audio_emotion(audio_path):
|
72 |
+
"""Analyzes emotion from audio file and returns emotion counts."""
|
73 |
+
# Load audio
|
74 |
+
y, sr = librosa.load(audio_path, sr=audio_sampling_rate)
|
75 |
+
|
76 |
+
# Process audio in chunks to avoid memory issues
|
77 |
+
chunk_length = audio_sampling_rate * 5 # 5 seconds
|
78 |
+
emotion_counts = {}
|
79 |
+
audio_emotions = []
|
80 |
+
|
81 |
+
# Process audio in chunks
|
82 |
+
for i in range(0, len(y), chunk_length):
|
83 |
+
chunk = y[i:min(i+chunk_length, len(y))]
|
84 |
+
|
85 |
+
# Skip chunks that are too short
|
86 |
+
if len(chunk) < audio_sampling_rate:
|
87 |
+
continue
|
88 |
+
|
89 |
+
# Process audio with the model
|
90 |
+
inputs = audio_processor(chunk, sampling_rate=audio_sampling_rate, return_tensors="pt").to(device)
|
91 |
+
with torch.no_grad():
|
92 |
+
outputs = audio_model(**inputs)
|
93 |
+
|
94 |
+
# Get prediction
|
95 |
+
predicted_class_id = torch.argmax(outputs.logits, dim=1).item()
|
96 |
+
emotion = audio_model.config.id2label[predicted_class_id]
|
97 |
+
audio_emotions.append(emotion)
|
98 |
+
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
|
99 |
+
|
100 |
+
return emotion_counts, audio_emotions
|
101 |
+
|
102 |
+
def map_emotion_labels(emotion, source="face"):
|
103 |
+
"""Standardizes emotion labels across different models."""
|
104 |
+
# Mapping dictionaries for different models
|
105 |
+
face_mapping = {
|
106 |
+
"happy": "Happy",
|
107 |
+
"sad": "Sad",
|
108 |
+
"angry": "Angry",
|
109 |
+
"surprise": "Surprised",
|
110 |
+
"fear": "Fearful",
|
111 |
+
"disgust": "Disgusted",
|
112 |
+
"neutral": "Neutral"
|
113 |
+
}
|
114 |
+
|
115 |
+
audio_mapping = {
|
116 |
+
"anger": "Angry",
|
117 |
+
"disgust": "Disgusted",
|
118 |
+
"fear": "Fearful",
|
119 |
+
"joy": "Happy",
|
120 |
+
"neutral": "Neutral",
|
121 |
+
"sadness": "Sad",
|
122 |
+
"surprise": "Surprised"
|
123 |
+
}
|
124 |
+
|
125 |
+
posture_mapping = {
|
126 |
+
"Confident": "Confident",
|
127 |
+
"Nervous": "Nervous",
|
128 |
+
"Defensive": "Defensive",
|
129 |
+
"Serious": "Serious",
|
130 |
+
"Attentive": "Attentive"
|
131 |
+
}
|
132 |
+
|
133 |
+
if source == "face":
|
134 |
+
return face_mapping.get(emotion.lower(), emotion)
|
135 |
+
elif source == "audio":
|
136 |
+
return audio_mapping.get(emotion.lower(), emotion)
|
137 |
+
elif source == "posture":
|
138 |
+
return posture_mapping.get(emotion, emotion)
|
139 |
+
|
140 |
+
return emotion
|
141 |
+
|
142 |
+
def draw_multimodal_sentiment_bar(frame, face_emotion, posture_label, audio_emotion, major_emotion, major_emotion_percent):
|
143 |
+
"""Draws multimodal emotion and posture sentiment on the frame."""
|
144 |
+
overlay = frame.copy()
|
145 |
+
cv2.rectangle(overlay, (10, 10), (450, 200), (255, 255, 255), -1)
|
146 |
+
|
147 |
+
# Display current emotions
|
148 |
+
cv2.putText(overlay, f'Face Emotion: {face_emotion}', (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
149 |
+
cv2.putText(overlay, f'Posture: {posture_label}', (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
150 |
+
cv2.putText(overlay, f'Audio Emotion: {audio_emotion}', (20, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
151 |
+
|
152 |
+
# Display major emotion
|
153 |
+
cv2.putText(overlay, f'Major Emotion: {major_emotion} ({major_emotion_percent:.1f}%)', (20, 130), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 2)
|
154 |
+
|
155 |
+
# Add explanation
|
156 |
+
reason_text = 'Weighted combination of face, posture, and audio analysis'
|
157 |
+
cv2.putText(overlay, f'Analysis: {reason_text}', (20, 160), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
|
158 |
+
|
159 |
+
# Blend overlay with original frame
|
160 |
+
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
|
161 |
+
|
162 |
+
def generate_multimodal_charts(face_emotion_counts, posture_counts, audio_emotion_counts):
|
163 |
+
"""Generates charts for all emotion modalities."""
|
164 |
+
# Create a figure with 3 subplots
|
165 |
+
fig, axs = plt.subplots(1, 3, figsize=(18, 6))
|
166 |
+
|
167 |
+
# Face emotions pie chart
|
168 |
+
labels, sizes = zip(*face_emotion_counts.items()) if face_emotion_counts else (["None"], [1])
|
169 |
+
axs[0].pie(sizes, labels=labels, autopct='%1.1f%%', colors=sns.color_palette('Blues'))
|
170 |
+
axs[0].set_title("Facial Emotions")
|
171 |
+
|
172 |
+
# Posture pie chart
|
173 |
+
labels, sizes = zip(*posture_counts.items()) if posture_counts else (["None"], [1])
|
174 |
+
axs[1].pie(sizes, labels=labels, autopct='%1.1f%%', colors=sns.color_palette('Greens'))
|
175 |
+
axs[1].set_title("Posture Analysis")
|
176 |
+
|
177 |
+
# Audio emotions pie chart
|
178 |
+
labels, sizes = zip(*audio_emotion_counts.items()) if audio_emotion_counts else (["None"], [1])
|
179 |
+
axs[2].pie(sizes, labels=labels, autopct='%1.1f%%', colors=sns.color_palette('Reds'))
|
180 |
+
axs[2].set_title("Audio Emotions")
|
181 |
+
|
182 |
+
plt.tight_layout()
|
183 |
+
plt.savefig("multimodal_emotion_analysis.jpg")
|
184 |
+
plt.close()
|
185 |
+
|
186 |
+
# Create combined emotions bar chart
|
187 |
+
plt.figure(figsize=(12, 6))
|
188 |
+
|
189 |
+
# Combine all emotions across modalities
|
190 |
+
all_emotions = set()
|
191 |
+
for counts in [face_emotion_counts, audio_emotion_counts]:
|
192 |
+
all_emotions.update(counts.keys())
|
193 |
+
|
194 |
+
# Prepare data for each emotion across modalities
|
195 |
+
emotions = list(all_emotions)
|
196 |
+
face_values = [face_emotion_counts.get(e, 0) for e in emotions]
|
197 |
+
audio_values = [audio_emotion_counts.get(e, 0) for e in emotions]
|
198 |
+
|
199 |
+
# Normalize values
|
200 |
+
if sum(face_values) > 0:
|
201 |
+
face_values = [v/sum(face_values)*100 for v in face_values]
|
202 |
+
if sum(audio_values) > 0:
|
203 |
+
audio_values = [v/sum(audio_values)*100 for v in audio_values]
|
204 |
+
|
205 |
+
# Create bar chart
|
206 |
+
x = np.arange(len(emotions))
|
207 |
+
width = 0.35
|
208 |
+
|
209 |
+
fig, ax = plt.subplots(figsize=(14, 8))
|
210 |
+
ax.bar(x - width/2, face_values, width, label='Face')
|
211 |
+
ax.bar(x + width/2, audio_values, width, label='Audio')
|
212 |
+
|
213 |
+
ax.set_title('Emotion Distribution by Modality')
|
214 |
+
ax.set_xlabel('Emotions')
|
215 |
+
ax.set_ylabel('Percentage (%)')
|
216 |
+
ax.set_xticks(x)
|
217 |
+
ax.set_xticklabels(emotions)
|
218 |
+
ax.legend()
|
219 |
+
|
220 |
+
plt.tight_layout()
|
221 |
+
plt.savefig("emotion_comparison.jpg")
|
222 |
+
plt.close()
|
223 |
+
|
224 |
+
def calculate_combined_sentiment(face_emotion_counts, posture_counts, audio_emotion_counts):
|
225 |
+
"""Calculates a combined sentiment score from all modalities."""
|
226 |
+
# Define emotion categories and weights
|
227 |
+
modality_weights = {
|
228 |
+
"face": 0.4,
|
229 |
+
"posture": 0.2,
|
230 |
+
"audio": 0.4
|
231 |
+
}
|
232 |
+
|
233 |
+
# Map posture labels to emotional states for better combination
|
234 |
+
posture_emotion_mapping = {
|
235 |
+
"Confident": "Happy",
|
236 |
+
"Nervous": "Fearful",
|
237 |
+
"Defensive": "Angry",
|
238 |
+
"Serious": "Neutral",
|
239 |
+
"Attentive": "Neutral"
|
240 |
+
}
|
241 |
+
|
242 |
+
# Convert posture counts to emotion counts
|
243 |
+
posture_emotion_counts = {}
|
244 |
+
for posture, count in posture_counts.items():
|
245 |
+
emotion = posture_emotion_mapping.get(posture, "Neutral")
|
246 |
+
posture_emotion_counts[emotion] = posture_emotion_counts.get(emotion, 0) + count
|
247 |
+
|
248 |
+
# Get all unique emotions across all modalities
|
249 |
+
all_emotions = set()
|
250 |
+
for counts in [face_emotion_counts, posture_emotion_counts, audio_emotion_counts]:
|
251 |
+
all_emotions.update(counts.keys())
|
252 |
+
|
253 |
+
# Calculate total frames/samples for each modality
|
254 |
+
face_total = sum(face_emotion_counts.values())
|
255 |
+
posture_total = sum(posture_counts.values())
|
256 |
+
audio_total = sum(audio_emotion_counts.values())
|
257 |
+
|
258 |
+
# Calculate weighted emotion scores
|
259 |
+
combined_scores = {}
|
260 |
+
|
261 |
+
for emotion in all_emotions:
|
262 |
+
# Get normalized scores from each modality (or 0 if not present)
|
263 |
+
face_score = face_emotion_counts.get(emotion, 0) / face_total if face_total > 0 else 0
|
264 |
+
posture_score = posture_emotion_counts.get(emotion, 0) / posture_total if posture_total > 0 else 0
|
265 |
+
audio_score = audio_emotion_counts.get(emotion, 0) / audio_total if audio_total > 0 else 0
|
266 |
+
|
267 |
+
# Calculate weighted score
|
268 |
+
weighted_score = (
|
269 |
+
face_score * modality_weights["face"] +
|
270 |
+
posture_score * modality_weights["posture"] +
|
271 |
+
audio_score * modality_weights["audio"]
|
272 |
+
)
|
273 |
+
|
274 |
+
combined_scores[emotion] = weighted_score
|
275 |
+
|
276 |
+
# Normalize to percentages
|
277 |
+
total_score = sum(combined_scores.values())
|
278 |
+
if total_score > 0:
|
279 |
+
for emotion in combined_scores:
|
280 |
+
combined_scores[emotion] = (combined_scores[emotion] / total_score) * 100
|
281 |
+
|
282 |
+
# Get the major emotion
|
283 |
+
major_emotion = max(combined_scores.items(), key=lambda x: x[1]) if combined_scores else ("Unknown", 0)
|
284 |
+
|
285 |
+
return combined_scores, major_emotion[0], major_emotion[1]
|
286 |
+
|
287 |
+
def process_video(input_path):
|
288 |
+
"""Processes the video with multimodal sentiment analysis."""
|
289 |
+
# Extract audio first
|
290 |
+
print("Extracting audio from video...")
|
291 |
+
audio_path = extract_audio(input_path)
|
292 |
+
|
293 |
+
# Analyze audio emotions
|
294 |
+
print("Analyzing audio emotions...")
|
295 |
+
audio_emotion_counts, audio_emotions_sequence = analyze_audio_emotion(audio_path)
|
296 |
+
|
297 |
+
# Process video frames
|
298 |
+
print("Processing video frames...")
|
299 |
+
cap = cv2.VideoCapture(input_path)
|
300 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
301 |
+
frame_width, frame_height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
302 |
+
out = cv2.VideoWriter("output_video.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
|
303 |
+
|
304 |
+
# Initialize counters
|
305 |
+
face_emotion_counts = {}
|
306 |
+
posture_counts = {}
|
307 |
+
total_frames = 0
|
308 |
+
frame_index = 0
|
309 |
+
|
310 |
+
# Get total frames for progress tracking
|
311 |
+
total_video_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
312 |
+
|
313 |
+
# Calculate frames per audio segment
|
314 |
+
audio_segments = len(audio_emotions_sequence)
|
315 |
+
frames_per_audio = max(1, total_video_frames // audio_segments) if audio_segments > 0 else 1
|
316 |
+
current_audio_index = 0
|
317 |
|
318 |
while cap.isOpened():
|
319 |
ret, frame = cap.read()
|
320 |
if not ret:
|
321 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
# Update progress
|
324 |
+
frame_index += 1
|
325 |
+
if frame_index % 30 == 0: # Show progress every 30 frames
|
326 |
+
print(f"Processing frame {frame_index}/{total_video_frames}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|