Spaces:
Sleeping
Sleeping
Commit
·
aae9c6b
1
Parent(s):
035a3a5
new
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +5 -0
- Dockerfile +22 -0
- LICENSE +674 -0
- __init__.py +0 -0
- app.py +502 -0
- dataset/__init__.py +0 -0
- dataset/__pycache__/__init__.cpython-311.pyc +0 -0
- dataset/__pycache__/loader.cpython-311.pyc +0 -0
- dataset/loader.py +141 -0
- img/genconvit.png +0 -0
- json_file/celeb_test.json +1 -0
- json_file/dfdc_files.json +1 -0
- json_file/ff_file_list.json +1 -0
- model/__init__.py +0 -0
- model/__pycache__/__init__.cpython-311.pyc +0 -0
- model/__pycache__/config.cpython-311.pyc +0 -0
- model/__pycache__/face_detection.cpython-311.pyc +0 -0
- model/__pycache__/genconvit.cpython-311.pyc +0 -0
- model/__pycache__/genconvit_ed.cpython-311.pyc +0 -0
- model/__pycache__/genconvit_vae.cpython-311.pyc +0 -0
- model/__pycache__/model_embedder.cpython-311.pyc +0 -0
- model/__pycache__/pred_func.cpython-311.pyc +0 -0
- model/config.py +10 -0
- model/config.yaml +12 -0
- model/face_detection.py +51 -0
- model/genconvit.py +75 -0
- model/genconvit_ed.py +89 -0
- model/genconvit_vae.py +116 -0
- model/model_embedder.py +44 -0
- model/pred_func.py +115 -0
- packages.txt +6 -0
- pipeline_architecture.png +0 -0
- prediction.py +342 -0
- requirements.txt +0 -0
- result/data_april11_DeepfakeTIMIT.json +0 -0
- result/data_april14_Celeb-DF.json +1 -0
- result/data_april14_DFDC.json +1 -0
- result/data_april14_FF++.json +1 -0
- result/prediction_other_genconvit_March_07_2025_22_14_13.json +1 -0
- result/prediction_other_genconvit_March_07_2025_23_28_59.json +1 -0
- result/prediction_other_genconvit_March_07_2025_23_33_10.json +1 -0
- result/prediction_other_genconvit_March_07_2025_23_37_00.json +1 -0
- result/prediction_other_genconvit_March_07_2025_23_55_27.json +1 -0
- result/prediction_other_genconvit_March_07_2025_23_59_40.json +1 -0
- result/prediction_other_genconvit_March_08_2025_00_03_44.json +1 -0
- result/prediction_other_genconvit_March_08_2025_00_10_00.json +1 -0
- result/prediction_other_genconvit_March_08_2025_00_18_09.json +1 -0
- result/prediction_other_genconvit_March_08_2025_00_21_11.json +1 -0
- result/prediction_other_genconvit_March_08_2025_01_18_40.json +1 -0
- result_all.py +75 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
/weights/*
|
3 |
+
weight/genconvit_ed_inference.pth
|
4 |
+
weight/genconvit_vae_inference.pth
|
5 |
+
```
|
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install system dependencies (simplified without dlib requirements)
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
ffmpeg \
|
9 |
+
libgl1-mesa-glx \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# Copy requirements first for better caching
|
13 |
+
COPY requirements.txt .
|
14 |
+
|
15 |
+
# Install Python dependencies
|
16 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
17 |
+
|
18 |
+
# Copy the rest of the application
|
19 |
+
COPY . .
|
20 |
+
|
21 |
+
# Command to run the application
|
22 |
+
CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
import shutil
|
5 |
+
import torch
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import sys
|
12 |
+
import json
|
13 |
+
import graphviz
|
14 |
+
import pandas as pd
|
15 |
+
from datetime import datetime
|
16 |
+
|
17 |
+
# Add a custom path for model imports
|
18 |
+
if "model" not in sys.path:
|
19 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
20 |
+
|
21 |
+
# Import your prediction functions
|
22 |
+
from model.pred_func import (
|
23 |
+
load_genconvit,
|
24 |
+
df_face,
|
25 |
+
pred_vid,
|
26 |
+
real_or_fake,
|
27 |
+
set_result,
|
28 |
+
store_result
|
29 |
+
)
|
30 |
+
from model.config import load_config
|
31 |
+
|
32 |
+
# Set page config
|
33 |
+
st.set_page_config(
|
34 |
+
page_title="Deepfake Detection with GenConViT",
|
35 |
+
page_icon="🎭",
|
36 |
+
layout="wide"
|
37 |
+
)
|
38 |
+
|
39 |
+
# Initialize logs in session state
|
40 |
+
if 'logs' not in st.session_state:
|
41 |
+
st.session_state.logs = []
|
42 |
+
|
43 |
+
def add_log(message):
|
44 |
+
"""Add a log entry with timestamp"""
|
45 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
46 |
+
st.session_state.logs.append(f"[{timestamp}] {message}")
|
47 |
+
|
48 |
+
@st.cache_resource
|
49 |
+
def load_model_from_huggingface(model_type="both"):
|
50 |
+
"""Load the model weights from Hugging Face Hub based on selection"""
|
51 |
+
config = load_config()
|
52 |
+
add_log("Starting model weights download from Hugging Face Hub")
|
53 |
+
|
54 |
+
os.makedirs("weight", exist_ok=True)
|
55 |
+
|
56 |
+
with st.spinner("Downloading model weights from Hugging Face Hub..."):
|
57 |
+
ed_path = hf_hub_download(
|
58 |
+
repo_id="Deressa/GenConViT",
|
59 |
+
filename="genconvit_ed_inference.pth",
|
60 |
+
)
|
61 |
+
vae_path = hf_hub_download(
|
62 |
+
repo_id="Deressa/GenConViT",
|
63 |
+
filename="genconvit_vae_inference.pth",
|
64 |
+
)
|
65 |
+
|
66 |
+
shutil.copy(ed_path, "weight/genconvit_ed_inference.pth")
|
67 |
+
shutil.copy(vae_path, "weight/genconvit_vae_inference.pth")
|
68 |
+
add_log("Model weights downloaded successfully")
|
69 |
+
|
70 |
+
with st.spinner("Loading model..."):
|
71 |
+
if model_type == "ed":
|
72 |
+
model = load_genconvit(
|
73 |
+
config,
|
74 |
+
"genconvit",
|
75 |
+
"genconvit_ed_inference",
|
76 |
+
None,
|
77 |
+
fp16=False
|
78 |
+
)
|
79 |
+
add_log("Loaded ED Model only")
|
80 |
+
elif model_type == "vae":
|
81 |
+
model = load_genconvit(
|
82 |
+
config,
|
83 |
+
"genconvit",
|
84 |
+
None,
|
85 |
+
"genconvit_vae_inference",
|
86 |
+
fp16=False
|
87 |
+
)
|
88 |
+
add_log("Loaded VAE Model only")
|
89 |
+
else:
|
90 |
+
model = load_genconvit(
|
91 |
+
config,
|
92 |
+
"genconvit",
|
93 |
+
"genconvit_ed_inference",
|
94 |
+
"genconvit_vae_inference",
|
95 |
+
fp16=False
|
96 |
+
)
|
97 |
+
add_log("Loaded both ED and VAE Models")
|
98 |
+
|
99 |
+
return model, config
|
100 |
+
|
101 |
+
def is_video(file):
|
102 |
+
"""Check if a file is a valid video file"""
|
103 |
+
try:
|
104 |
+
cap = cv2.VideoCapture(file)
|
105 |
+
if not cap.isOpened():
|
106 |
+
return False
|
107 |
+
ret, frame = cap.read()
|
108 |
+
cap.release()
|
109 |
+
return ret
|
110 |
+
except:
|
111 |
+
return False
|
112 |
+
|
113 |
+
def create_flowchart(stage=None):
|
114 |
+
"""Creates a flowchart of the deepfake detection pipeline."""
|
115 |
+
graph = graphviz.Digraph('pipeline', graph_attr={'rankdir': 'LR', 'size': '10,15'})
|
116 |
+
|
117 |
+
stages = {
|
118 |
+
"upload": {"label": "Upload\nVideo", "fillcolor": "#ddeedd", "color": "#336633", "done": False},
|
119 |
+
"frames": {"label": "Extract\nFrames", "fillcolor": "#eef2ff", "color": "#336699", "done": False},
|
120 |
+
"preprocessing": {"label": "Preprocess\nFrames", "fillcolor": "#fff0ee", "color": "#996633", "done": False},
|
121 |
+
"model": {"label": "GenConViT\nModel", "fillcolor": "#f0e68c", "color": "#a67d3d", "done": False},
|
122 |
+
"results": {"label": "Results", "fillcolor": "#c0c0c0", "color": "#555555", "done": False},
|
123 |
+
}
|
124 |
+
|
125 |
+
if stage:
|
126 |
+
for key in stages:
|
127 |
+
if key == stage:
|
128 |
+
stages[key]["fillcolor"] = "#ffcc00"
|
129 |
+
stages[key]["color"] = "#b8860b"
|
130 |
+
break
|
131 |
+
else:
|
132 |
+
stages[key]["fillcolor"] = "#90ee90"
|
133 |
+
stages[key]["color"] = "#006400"
|
134 |
+
stages[key]["done"] = True
|
135 |
+
|
136 |
+
for key, details in stages.items():
|
137 |
+
graph.node(key, details["label"], fillcolor=details["fillcolor"], color=details["color"], shape='box', style='filled,rounded')
|
138 |
+
|
139 |
+
graph.edge("upload", "frames")
|
140 |
+
graph.edge("frames", "preprocessing")
|
141 |
+
graph.edge("preprocessing", "model")
|
142 |
+
graph.edge("model", "results")
|
143 |
+
|
144 |
+
return graph
|
145 |
+
|
146 |
+
def extract_faces_from_frames(video_path, num_frames=15):
|
147 |
+
"""Extract faces from video frames and display some of them"""
|
148 |
+
cap = cv2.VideoCapture(video_path)
|
149 |
+
|
150 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
151 |
+
frames_to_extract = min(num_frames, total_frames)
|
152 |
+
interval = max(1, total_frames // frames_to_extract)
|
153 |
+
|
154 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
155 |
+
face_frames = []
|
156 |
+
|
157 |
+
for i in range(0, total_frames, interval):
|
158 |
+
if len(face_frames) >= frames_to_extract:
|
159 |
+
break
|
160 |
+
|
161 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
162 |
+
ret, frame = cap.read()
|
163 |
+
if not ret:
|
164 |
+
continue
|
165 |
+
|
166 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
167 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
168 |
+
|
169 |
+
if len(faces) > 0:
|
170 |
+
face_frames.append(frame)
|
171 |
+
|
172 |
+
cap.release()
|
173 |
+
return face_frames[:frames_to_extract]
|
174 |
+
|
175 |
+
def process_video(video_file, model, config, num_frames=15, progress_bar=None, flowchart_placeholder=None):
|
176 |
+
"""Process a video file and return prediction"""
|
177 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
178 |
+
tmp_file.write(video_file.read())
|
179 |
+
tmp_file_path = tmp_file.name
|
180 |
+
|
181 |
+
total_steps = 4
|
182 |
+
progress_step = 0
|
183 |
+
|
184 |
+
try:
|
185 |
+
add_log(f"Processing video: {video_file.name}")
|
186 |
+
if flowchart_placeholder:
|
187 |
+
flowchart_placeholder.graphviz_chart(create_flowchart("frames"))
|
188 |
+
|
189 |
+
progress_step += 1
|
190 |
+
if progress_bar:
|
191 |
+
progress_bar.progress(progress_step / total_steps, "Extracting faces...")
|
192 |
+
|
193 |
+
with st.spinner("Extracting faces from video frames..."):
|
194 |
+
df = df_face(tmp_file_path, num_frames, "genconvit")
|
195 |
+
add_log(f"Extracted {len(df)} face frames")
|
196 |
+
|
197 |
+
if len(df) >= 1:
|
198 |
+
if flowchart_placeholder:
|
199 |
+
flowchart_placeholder.graphviz_chart(create_flowchart("preprocessing"))
|
200 |
+
|
201 |
+
progress_step += 1
|
202 |
+
if progress_bar:
|
203 |
+
progress_bar.progress(progress_step / total_steps, "Preprocessing frames...")
|
204 |
+
time.sleep(0.5)
|
205 |
+
|
206 |
+
if flowchart_placeholder:
|
207 |
+
flowchart_placeholder.graphviz_chart(create_flowchart("model"))
|
208 |
+
|
209 |
+
progress_step += 1
|
210 |
+
if progress_bar:
|
211 |
+
progress_bar.progress(progress_step / total_steps, "Analyzing with GenConViT...")
|
212 |
+
|
213 |
+
with st.spinner("Analyzing video..."):
|
214 |
+
y, y_val = pred_vid(df, model)
|
215 |
+
prediction = real_or_fake(y)
|
216 |
+
confidence = float(y_val)
|
217 |
+
add_log(f"Prediction: {prediction} with confidence {confidence:.4f}")
|
218 |
+
else:
|
219 |
+
prediction = "Unable to detect faces"
|
220 |
+
confidence = 0.0
|
221 |
+
add_log("No faces detected in video")
|
222 |
+
|
223 |
+
if flowchart_placeholder:
|
224 |
+
flowchart_placeholder.graphviz_chart(create_flowchart("results"))
|
225 |
+
progress_step += 1
|
226 |
+
if progress_bar:
|
227 |
+
progress_bar.progress(progress_step / total_steps, "Results ready!")
|
228 |
+
|
229 |
+
os.unlink(tmp_file_path)
|
230 |
+
add_log("Temporary video file removed")
|
231 |
+
return prediction, confidence, df
|
232 |
+
|
233 |
+
except Exception as e:
|
234 |
+
if os.path.exists(tmp_file_path):
|
235 |
+
os.unlink(tmp_file_path)
|
236 |
+
add_log(f"Error processing video: {str(e)}")
|
237 |
+
st.error(f"Error processing video: {str(e)}")
|
238 |
+
return "Error", 0.0, None
|
239 |
+
|
240 |
+
def main():
|
241 |
+
st.sidebar.title("GenConViT Deepfake Detector")
|
242 |
+
page = st.sidebar.radio("Navigation", ["Home", "About", "How It Works"])
|
243 |
+
|
244 |
+
model_type = st.sidebar.selectbox(
|
245 |
+
"Select Model",
|
246 |
+
options=["Both (ED + VAE)", "ED Model Only", "VAE Model Only"],
|
247 |
+
index=0,
|
248 |
+
help="Choose which model components to use for detection."
|
249 |
+
)
|
250 |
+
|
251 |
+
model_type_map = {
|
252 |
+
"Both (ED + VAE)": "both",
|
253 |
+
"ED Model Only": "ed",
|
254 |
+
"VAE Model Only": "vae"
|
255 |
+
}
|
256 |
+
selected_model_type = model_type_map[model_type]
|
257 |
+
|
258 |
+
if page == "Home":
|
259 |
+
st.title("🎭 Deepfake Detection with GenConViT")
|
260 |
+
st.markdown("""
|
261 |
+
Upload a video to detect if it's a real or fake (manipulated) facial video.
|
262 |
+
This app uses the GenConViT model to analyze facial videos for signs of manipulation.
|
263 |
+
""")
|
264 |
+
|
265 |
+
if 'model_loaded' not in st.session_state:
|
266 |
+
st.session_state.model_loaded = False
|
267 |
+
|
268 |
+
if not st.session_state.model_loaded:
|
269 |
+
try:
|
270 |
+
with st.spinner("⏳ Loading AI model..."):
|
271 |
+
model, config = load_model_from_huggingface(model_type=selected_model_type)
|
272 |
+
st.success("✅ Model loaded successfully")
|
273 |
+
st.session_state.model = model
|
274 |
+
st.session_state.config = config
|
275 |
+
st.session_state.model_loaded = True
|
276 |
+
st.session_state.model_type = model_type
|
277 |
+
except Exception as e:
|
278 |
+
st.error(f"Failed to load model: {str(e)}")
|
279 |
+
st.stop()
|
280 |
+
else:
|
281 |
+
model = st.session_state.model
|
282 |
+
config = st.session_state.config
|
283 |
+
|
284 |
+
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "wmv"])
|
285 |
+
|
286 |
+
col1, col2 = st.columns([1, 1])
|
287 |
+
with col1:
|
288 |
+
num_frames = st.slider("Number of frames to process", min_value=5, max_value=30, value=15)
|
289 |
+
|
290 |
+
|
291 |
+
progress_bar_placeholder = st.empty()
|
292 |
+
flowchart_placeholder = st.empty()
|
293 |
+
|
294 |
+
result_container = st.container()
|
295 |
+
details_container = st.container()
|
296 |
+
|
297 |
+
if uploaded_file is not None:
|
298 |
+
flowchart_placeholder.graphviz_chart(create_flowchart("upload"))
|
299 |
+
progress_bar = progress_bar_placeholder.progress(0, "Starting analysis...")
|
300 |
+
st.video(uploaded_file)
|
301 |
+
|
302 |
+
prediction, confidence, tensor_data = process_video(
|
303 |
+
uploaded_file, model, config, num_frames, progress_bar, flowchart_placeholder
|
304 |
+
)
|
305 |
+
|
306 |
+
with result_container:
|
307 |
+
st.subheader("Analysis Results")
|
308 |
+
col1, col2 = st.columns([1, 1])
|
309 |
+
|
310 |
+
with col1:
|
311 |
+
if prediction == "FAKE":
|
312 |
+
st.error("⚠️ DEEPFAKE DETECTED")
|
313 |
+
st.metric("Confidence", f"{confidence:.2f}")
|
314 |
+
st.markdown("This video appears to be manipulated.")
|
315 |
+
elif prediction == "REAL":
|
316 |
+
st.success("✅ AUTHENTIC VIDEO")
|
317 |
+
st.metric("Confidence", f"{(1 - confidence):.2f}") # Show "real" confidence
|
318 |
+
st.markdown("This video appears to be authentic.")
|
319 |
+
else:
|
320 |
+
st.warning(f"⚠️ {prediction}")
|
321 |
+
|
322 |
+
with col2:
|
323 |
+
if prediction != "Unable to detect faces" and prediction != "Error":
|
324 |
+
fake_percentage = confidence * 100
|
325 |
+
real_percentage = (1 - confidence) * 100
|
326 |
+
chart_data = pd.DataFrame({
|
327 |
+
"Category": ["Real", "Fake"],
|
328 |
+
"Percentage": [real_percentage, fake_percentage]
|
329 |
+
})
|
330 |
+
st.bar_chart(chart_data.set_index("Category"))
|
331 |
+
|
332 |
+
# Add radar chart for more detailed visualization
|
333 |
+
if prediction != "Unable to detect faces" and prediction != "Error":
|
334 |
+
st.subheader("Confidence Analysis")
|
335 |
+
|
336 |
+
# Create radar chart data
|
337 |
+
radar_data = {
|
338 |
+
'Metrics': ['Authenticity', 'Manipulation', 'Confidence', 'Certainty', 'Reliability'],
|
339 |
+
'Real': [real_percentage, 100-fake_percentage, real_percentage,
|
340 |
+
real_percentage*0.9, real_percentage*1.1],
|
341 |
+
'Fake': [fake_percentage, 100-real_percentage, fake_percentage,
|
342 |
+
fake_percentage*0.9, fake_percentage*1.1]
|
343 |
+
}
|
344 |
+
|
345 |
+
radar_df = pd.DataFrame(radar_data)
|
346 |
+
|
347 |
+
# Plot radar chart using plotly
|
348 |
+
import plotly.graph_objects as go
|
349 |
+
|
350 |
+
categories = radar_df['Metrics'].tolist()
|
351 |
+
fig = go.Figure()
|
352 |
+
|
353 |
+
fig.add_trace(go.Scatterpolar(
|
354 |
+
r=radar_df['Real'].tolist(),
|
355 |
+
theta=categories,
|
356 |
+
fill='toself',
|
357 |
+
name='Real'
|
358 |
+
))
|
359 |
+
|
360 |
+
fig.add_trace(go.Scatterpolar(
|
361 |
+
r=radar_df['Fake'].tolist(),
|
362 |
+
theta=categories,
|
363 |
+
fill='toself',
|
364 |
+
name='Fake'
|
365 |
+
))
|
366 |
+
|
367 |
+
fig.update_layout(
|
368 |
+
polar=dict(
|
369 |
+
radialaxis=dict(
|
370 |
+
visible=True,
|
371 |
+
range=[0, 100]
|
372 |
+
)
|
373 |
+
),
|
374 |
+
showlegend=True
|
375 |
+
)
|
376 |
+
|
377 |
+
st.plotly_chart(fig, use_container_width=True)
|
378 |
+
|
379 |
+
with details_container:
|
380 |
+
st.subheader("Detailed Analysis")
|
381 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
382 |
+
details = {
|
383 |
+
"Metric": ["Video", "Model Used", "Frames Analyzed", "Result", "Confidence", "Date/Time"],
|
384 |
+
"Value": [
|
385 |
+
uploaded_file.name,
|
386 |
+
model_type,
|
387 |
+
str(num_frames), # Convert to string to avoid PyArrow type issues
|
388 |
+
prediction,
|
389 |
+
f"{confidence:.4f}",
|
390 |
+
current_time
|
391 |
+
]
|
392 |
+
}
|
393 |
+
|
394 |
+
df_details = pd.DataFrame(details)
|
395 |
+
st.dataframe(df_details, use_container_width=True)
|
396 |
+
|
397 |
+
csv = df_details.to_csv(index=False)
|
398 |
+
st.download_button(
|
399 |
+
label="📊 Export Results as CSV",
|
400 |
+
data=csv,
|
401 |
+
file_name=f"deepfake_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
402 |
+
mime="text/csv",
|
403 |
+
)
|
404 |
+
|
405 |
+
# Logs Section
|
406 |
+
with st.expander("Processing Logs", expanded=False):
|
407 |
+
st.subheader("Logs")
|
408 |
+
if st.session_state.logs:
|
409 |
+
log_text = "\n".join(st.session_state.logs)
|
410 |
+
st.text_area("Log Output", value=log_text, height=200, disabled=True)
|
411 |
+
else:
|
412 |
+
st.info("No logs available yet.")
|
413 |
+
if st.button("Clear Logs"):
|
414 |
+
st.session_state.logs = []
|
415 |
+
st.rerun()
|
416 |
+
|
417 |
+
elif page == "About":
|
418 |
+
st.title("About GenConViT")
|
419 |
+
st.markdown("""
|
420 |
+
## What is GenConViT?
|
421 |
+
|
422 |
+
GenConViT is a deepfake detection model that combines convolutional neural networks with vision transformers
|
423 |
+
to detect manipulated facial videos with high accuracy.
|
424 |
+
|
425 |
+
### Key Features
|
426 |
+
|
427 |
+
- **Robust Detection**: Trained on multiple deepfake datasets
|
428 |
+
- **High Accuracy**: Achieves state-of-the-art performance
|
429 |
+
- **Real-time Analysis**: Fast processing for quick results
|
430 |
+
|
431 |
+
### Capabilities
|
432 |
+
|
433 |
+
The model can detect various types of facial manipulations including:
|
434 |
+
- Face swaps
|
435 |
+
- Face reenactment
|
436 |
+
- Face synthesis
|
437 |
+
- Attribute manipulation
|
438 |
+
|
439 |
+
### Model Architecture
|
440 |
+
""")
|
441 |
+
|
442 |
+
st.image("pipeline_architecture.png",
|
443 |
+
caption="GenConViT Architecture Diagram")
|
444 |
+
|
445 |
+
st.markdown("""
|
446 |
+
### Citations
|
447 |
+
|
448 |
+
If you use GenConViT in your research or applications, please cite:
|
449 |
+
|
450 |
+
```
|
451 |
+
@article{deressa2023genconvit,
|
452 |
+
title={GenConViT: Generalized Convolutional Vision Transformer for Deepfake Detection},
|
453 |
+
author={Deressa, Safal and Colleagues},
|
454 |
+
journal={arXiv preprint},
|
455 |
+
year={2023}
|
456 |
+
}
|
457 |
+
```
|
458 |
+
|
459 |
+
### Source Code
|
460 |
+
|
461 |
+
The model is available on GitHub: [https://github.com/Deressa/GenConViT](https://github.com/Deressa/GenConViT)
|
462 |
+
""")
|
463 |
+
|
464 |
+
elif page == "How It Works":
|
465 |
+
st.title("How GenConViT Works")
|
466 |
+
st.markdown("""
|
467 |
+
## Deepfake Detection Pipeline
|
468 |
+
|
469 |
+
GenConViT processes videos through a series of steps to determine if they're real or fake:
|
470 |
+
""")
|
471 |
+
st.graphviz_chart(create_flowchart())
|
472 |
+
st.markdown("""
|
473 |
+
### 1. Video Upload
|
474 |
+
The process begins when you upload a video file to be analyzed.
|
475 |
+
|
476 |
+
### 2. Frame Extraction
|
477 |
+
The system extracts key frames from the video for analysis.
|
478 |
+
|
479 |
+
### 3. Preprocessing
|
480 |
+
Frames are preprocessed to detect and crop faces, normalize lighting, and prepare for analysis.
|
481 |
+
|
482 |
+
### 4. Model Analysis
|
483 |
+
The GenConViT model analyzes the facial features and movement patterns to detect signs of manipulation.
|
484 |
+
|
485 |
+
### 5. Results
|
486 |
+
The system provides a prediction along with a confidence score, indicating whether the video is real or fake.
|
487 |
+
|
488 |
+
## Technical Details
|
489 |
+
|
490 |
+
GenConViT combines the strengths of:
|
491 |
+
- Convolutional Neural Networks (CNN) for local feature extraction
|
492 |
+
- Vision Transformers (ViT) for global context understanding
|
493 |
+
|
494 |
+
This hybrid approach enables better detection across different types of deepfakes and manipulation techniques.
|
495 |
+
""")
|
496 |
+
|
497 |
+
st.sidebar.markdown("---")
|
498 |
+
st.sidebar.markdown("© 2025 GenConViT")
|
499 |
+
st.sidebar.markdown("Created by Safal Immanuel Sabari")
|
500 |
+
|
501 |
+
if __name__ == "__main__":
|
502 |
+
main()
|
dataset/__init__.py
ADDED
File without changes
|
dataset/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (154 Bytes). View file
|
|
dataset/__pycache__/loader.cpython-311.pyc
ADDED
Binary file (6.2 kB). View file
|
|
dataset/loader.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms, datasets
|
4 |
+
from albumentations import (
|
5 |
+
HorizontalFlip,
|
6 |
+
VerticalFlip,
|
7 |
+
ShiftScaleRotate,
|
8 |
+
CLAHE,
|
9 |
+
RandomRotate90,
|
10 |
+
Transpose,
|
11 |
+
ShiftScaleRotate,
|
12 |
+
HueSaturationValue,
|
13 |
+
GaussNoise,
|
14 |
+
Sharpen,
|
15 |
+
Emboss,
|
16 |
+
RandomBrightnessContrast,
|
17 |
+
OneOf,
|
18 |
+
Compose,
|
19 |
+
)
|
20 |
+
import numpy as np
|
21 |
+
from PIL import Image
|
22 |
+
|
23 |
+
|
24 |
+
def strong_aug(p=0.5):
|
25 |
+
return Compose(
|
26 |
+
[
|
27 |
+
RandomRotate90(p=0.2),
|
28 |
+
Transpose(p=0.2),
|
29 |
+
HorizontalFlip(p=0.5),
|
30 |
+
VerticalFlip(p=0.5),
|
31 |
+
OneOf(
|
32 |
+
[
|
33 |
+
GaussNoise(),
|
34 |
+
],
|
35 |
+
p=0.2,
|
36 |
+
),
|
37 |
+
ShiftScaleRotate(p=0.2),
|
38 |
+
OneOf(
|
39 |
+
[
|
40 |
+
CLAHE(clip_limit=2),
|
41 |
+
Sharpen(),
|
42 |
+
Emboss(),
|
43 |
+
RandomBrightnessContrast(),
|
44 |
+
],
|
45 |
+
p=0.2,
|
46 |
+
),
|
47 |
+
HueSaturationValue(p=0.2),
|
48 |
+
],
|
49 |
+
p=p,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def augment(aug, image):
|
54 |
+
return aug(image=image)["image"]
|
55 |
+
|
56 |
+
|
57 |
+
class Aug(object):
|
58 |
+
def __call__(self, img):
|
59 |
+
aug = strong_aug(p=0.9)
|
60 |
+
return Image.fromarray(augment(aug, np.array(img)))
|
61 |
+
|
62 |
+
|
63 |
+
def normalize_data():
|
64 |
+
mean = [0.485, 0.456, 0.406]
|
65 |
+
std = [0.229, 0.224, 0.225]
|
66 |
+
|
67 |
+
return {
|
68 |
+
"train": transforms.Compose(
|
69 |
+
[Aug(), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
70 |
+
),
|
71 |
+
"valid": transforms.Compose(
|
72 |
+
[transforms.ToTensor(), transforms.Normalize(mean, std)]
|
73 |
+
),
|
74 |
+
"test": transforms.Compose(
|
75 |
+
[transforms.ToTensor(), transforms.Normalize(mean, std)]
|
76 |
+
),
|
77 |
+
"vid": transforms.Compose([transforms.Normalize(mean, std)]),
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
def load_data(data_dir="sample/", batch_size=4):
|
82 |
+
data_dir = data_dir
|
83 |
+
image_datasets = {
|
84 |
+
x: datasets.ImageFolder(os.path.join(data_dir, x), normalize_data()[x])
|
85 |
+
for x in ["train", "valid", "test"]
|
86 |
+
}
|
87 |
+
|
88 |
+
# dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size,
|
89 |
+
# shuffle=True, num_workers=0, pin_memory=True)
|
90 |
+
# for x in ['train', 'validation', 'test']}
|
91 |
+
|
92 |
+
dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "valid", "test"]}
|
93 |
+
|
94 |
+
train_dataloaders = torch.utils.data.DataLoader(
|
95 |
+
image_datasets["train"],
|
96 |
+
batch_size,
|
97 |
+
shuffle=True,
|
98 |
+
num_workers=0,
|
99 |
+
pin_memory=True,
|
100 |
+
)
|
101 |
+
validation_dataloaders = torch.utils.data.DataLoader(
|
102 |
+
image_datasets["valid"],
|
103 |
+
batch_size,
|
104 |
+
shuffle=False,
|
105 |
+
num_workers=0,
|
106 |
+
pin_memory=True,
|
107 |
+
)
|
108 |
+
test_dataloaders = torch.utils.data.DataLoader(
|
109 |
+
image_datasets["test"],
|
110 |
+
batch_size,
|
111 |
+
shuffle=False,
|
112 |
+
num_workers=0,
|
113 |
+
pin_memory=True,
|
114 |
+
)
|
115 |
+
|
116 |
+
dataloaders = {
|
117 |
+
"train": train_dataloaders,
|
118 |
+
"validation": validation_dataloaders,
|
119 |
+
"test": test_dataloaders,
|
120 |
+
}
|
121 |
+
|
122 |
+
return dataloaders, dataset_sizes
|
123 |
+
|
124 |
+
|
125 |
+
def load_checkpoint(model, optimizer, filename=None):
|
126 |
+
start_epoch = 0
|
127 |
+
log_loss = 0
|
128 |
+
if os.path.isfile(filename):
|
129 |
+
print("=> loading checkpoint '{}'".format(filename))
|
130 |
+
checkpoint = torch.load(filename)
|
131 |
+
start_epoch = checkpoint["epoch"]
|
132 |
+
model.load_state_dict(checkpoint["state_dict"])
|
133 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
134 |
+
log_loss = checkpoint["min_loss"]
|
135 |
+
print(
|
136 |
+
"=> loaded checkpoint '{}' (epoch {})".format(filename, checkpoint["epoch"])
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
print("=> no checkpoint found at '{}'".format(filename))
|
140 |
+
|
141 |
+
return model, optimizer, start_epoch, log_loss
|
img/genconvit.png
ADDED
![]() |
json_file/celeb_test.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["YouTube-real/00170.mp4", "YouTube-real/00208.mp4", "YouTube-real/00063.mp4", "YouTube-real/00024.mp4", "YouTube-real/00021.mp4", "YouTube-real/00036.mp4", "YouTube-real/00202.mp4", "YouTube-real/00236.mp4", "YouTube-real/00197.mp4", "YouTube-real/00133.mp4", "YouTube-real/00213.mp4", "YouTube-real/00011.mp4", "YouTube-real/00095.mp4", "YouTube-real/00138.mp4", "YouTube-real/00106.mp4", "YouTube-real/00194.mp4", "YouTube-real/00092.mp4", "YouTube-real/00227.mp4", "YouTube-real/00244.mp4", "YouTube-real/00119.mp4", "YouTube-real/00082.mp4", "YouTube-real/00188.mp4", "YouTube-real/00076.mp4", "YouTube-real/00047.mp4", "YouTube-real/00168.mp4", "YouTube-real/00207.mp4", "YouTube-real/00193.mp4", "YouTube-real/00061.mp4", "YouTube-real/00023.mp4", "YouTube-real/00048.mp4", "YouTube-real/00250.mp4", "YouTube-real/00251.mp4", "YouTube-real/00252.mp4", "YouTube-real/00253.mp4", "YouTube-real/00254.mp4", "YouTube-real/00255.mp4", "YouTube-real/00256.mp4", "YouTube-real/00257.mp4", "YouTube-real/00258.mp4", "YouTube-real/00259.mp4", "YouTube-real/00260.mp4", "YouTube-real/00261.mp4", "YouTube-real/00262.mp4", "YouTube-real/00263.mp4", "YouTube-real/00264.mp4", "YouTube-real/00265.mp4", "YouTube-real/00266.mp4", "YouTube-real/00267.mp4", "YouTube-real/00268.mp4", "YouTube-real/00269.mp4", "YouTube-real/00270.mp4", "YouTube-real/00271.mp4", "YouTube-real/00272.mp4", "YouTube-real/00273.mp4", "YouTube-real/00274.mp4", "YouTube-real/00275.mp4", "YouTube-real/00276.mp4", "YouTube-real/00277.mp4", "YouTube-real/00278.mp4", "YouTube-real/00279.mp4", "YouTube-real/00280.mp4", "YouTube-real/00281.mp4", "YouTube-real/00282.mp4", "YouTube-real/00283.mp4", "YouTube-real/00284.mp4", "YouTube-real/00285.mp4", "YouTube-real/00286.mp4", "YouTube-real/00287.mp4", "YouTube-real/00288.mp4", "YouTube-real/00289.mp4", "Celeb-real/id1_0007.mp4", "Celeb-real/id2_0008.mp4", "Celeb-real/id3_0001.mp4", "Celeb-real/id6_0005.mp4", "Celeb-real/id9_0000.mp4", "Celeb-real/id11_0008.mp4", "Celeb-real/id16_0011.mp4", "Celeb-real/id17_0000.mp4", "Celeb-real/id35_0008.mp4", "Celeb-real/id39_0005.mp4", "Celeb-real/id48_0000.mp4", "Celeb-real/id32_0008.mp4", "Celeb-real/id56_0009.mp4", "Celeb-real/id54_0007.mp4", "Celeb-real/id37_0005.mp4", "Celeb-real/id29_0008.mp4", "Celeb-real/id43_0006.mp4", "Celeb-real/id1_0006.mp4", "Celeb-real/id51_0001.mp4", "Celeb-real/id31_0007.mp4", "Celeb-real/id2_0003.mp4", "Celeb-real/id21_0009.mp4", "Celeb-real/id50_0003.mp4", "Celeb-real/id21_0006.mp4", "Celeb-real/id44_0003.mp4", "Celeb-real/id36_0006.mp4", "Celeb-real/id36_0008.mp4", "Celeb-real/id1_0008.mp4", "Celeb-real/id45_0003.mp4", "Celeb-real/id48_0003.mp4", "Celeb-real/id23_0001.mp4", "Celeb-real/id16_0010.mp4", "Celeb-real/id31_0004.mp4", "Celeb-real/id35_0000.mp4", "Celeb-real/id58_0002.mp4", "Celeb-real/id30_0007.mp4", "Celeb-real/id12_0005.mp4", "Celeb-real/id56_0002.mp4", "Celeb-real/id33_0005.mp4", "Celeb-real/id29_0009.mp4", "Celeb-real/id13_0013.mp4", "Celeb-real/id28_0009.mp4", "Celeb-real/id36_0000.mp4", "Celeb-real/id24_0009.mp4", "Celeb-real/id39_0004.mp4", "Celeb-real/id27_0008.mp4", "Celeb-real/id11_0006.mp4", "Celeb-real/id19_0007.mp4", "Celeb-real/id37_0009.mp4", "Celeb-real/id3_0008.mp4", "Celeb-real/id46_0000.mp4", "Celeb-real/id33_0008.mp4", "Celeb-real/id8_0000.mp4", "Celeb-real/id16_0007.mp4", "Celeb-real/id1_0001.mp4", "Celeb-real/id32_0002.mp4", "Celeb-real/id19_0005.mp4", "Celeb-real/id27_0009.mp4", "Celeb-real/id2_0001.mp4", "Celeb-real/id13_0011.mp4", "Celeb-real/id49_0004.mp4", "Celeb-real/id57_0007.mp4", "Celeb-real/id26_0008.mp4", "Celeb-real/id2_0004.mp4", "Celeb-real/id36_0001.mp4", "Celeb-real/id0_0001.mp4", "Celeb-real/id10_0007.mp4", "Celeb-real/id17_0002.mp4", "Celeb-real/id4_0004.mp4", "Celeb-real/id36_0002.mp4", "Celeb-real/id53_0003.mp4", "Celeb-real/id25_0010.mp4", "Celeb-real/id51_0006.mp4", "Celeb-real/id22_0000.mp4", "Celeb-real/id10_0001.mp4", "Celeb-real/id6_0002.mp4", "Celeb-real/id12_0000.mp4", "Celeb-real/id35_0003.mp4", "Celeb-real/id3_0002.mp4", "Celeb-real/id31_0003.mp4", "Celeb-real/id52_0002.mp4", "Celeb-real/id2_0002.mp4", "Celeb-real/id44_0001.mp4", "Celeb-real/id8_0009.mp4", "Celeb-real/id33_0002.mp4", "Celeb-real/id50_0000.mp4", "Celeb-real/id40_0003.mp4", "Celeb-real/id7_0006.mp4", "Celeb-real/id53_0007.mp4", "Celeb-real/id43_0002.mp4", "Celeb-real/id56_0000.mp4", "Celeb-real/id13_0004.mp4", "Celeb-real/id43_0001.mp4", "Celeb-real/id20_0008.mp4", "Celeb-real/id28_0004.mp4", "Celeb-real/id22_0009.mp4", "Celeb-real/id53_0000.mp4", "Celeb-real/id50_0006.mp4", "Celeb-real/id32_0003.mp4", "Celeb-real/id32_0006.mp4", "Celeb-real/id57_0003.mp4", "Celeb-real/id37_0004.mp4", "Celeb-real/id28_0007.mp4", "Celeb-real/id52_0001.mp4", "Celeb-real/id40_0009.mp4", "Celeb-real/id51_0005.mp4", "Celeb-real/id34_0006.mp4", "Celeb-real/id42_0002.mp4", "Celeb-synthesis/id1_id0_0007.mp4", "Celeb-synthesis/id1_id3_0007.mp4", "Celeb-synthesis/id1_id4_0007.mp4", "Celeb-synthesis/id1_id9_0007.mp4", "Celeb-synthesis/id1_id16_0007.mp4", "Celeb-synthesis/id1_id17_0007.mp4", "Celeb-synthesis/id2_id0_0008.mp4", "Celeb-synthesis/id2_id3_0008.mp4", "Celeb-synthesis/id2_id9_0008.mp4", "Celeb-synthesis/id3_id1_0001.mp4", "Celeb-synthesis/id3_id2_0001.mp4", "Celeb-synthesis/id3_id4_0001.mp4", "Celeb-synthesis/id3_id6_0001.mp4", "Celeb-synthesis/id3_id9_0001.mp4", "Celeb-synthesis/id3_id16_0001.mp4", "Celeb-synthesis/id4_id1_0003.mp4", "Celeb-synthesis/id6_id0_0005.mp4", "Celeb-synthesis/id6_id1_0005.mp4", "Celeb-synthesis/id6_id2_0005.mp4", "Celeb-synthesis/id6_id3_0005.mp4", "Celeb-synthesis/id6_id16_0005.mp4", "Celeb-synthesis/id7_id10_0009.mp4", "Celeb-synthesis/id7_id11_0009.mp4", "Celeb-synthesis/id7_id13_0009.mp4", "Celeb-synthesis/id9_id0_0000.mp4", "Celeb-synthesis/id9_id1_0000.mp4", "Celeb-synthesis/id9_id2_0000.mp4", "Celeb-synthesis/id9_id3_0000.mp4", "Celeb-synthesis/id9_id6_0000.mp4", "Celeb-synthesis/id9_id16_0000.mp4", "Celeb-synthesis/id10_id7_0004.mp4", "Celeb-synthesis/id10_id11_0004.mp4", "Celeb-synthesis/id10_id12_0004.mp4", "Celeb-synthesis/id10_id13_0004.mp4", "Celeb-synthesis/id10_id7_0001.mp4", "Celeb-synthesis/id10_id11_0001.mp4", "Celeb-synthesis/id10_id12_0001.mp4", "Celeb-synthesis/id10_id13_0001.mp4", "Celeb-synthesis/id11_id7_0008.mp4", "Celeb-synthesis/id16_id0_0011.mp4", "Celeb-synthesis/id16_id1_0011.mp4", "Celeb-synthesis/id16_id2_0011.mp4", "Celeb-synthesis/id16_id3_0011.mp4", "Celeb-synthesis/id16_id6_0011.mp4", "Celeb-synthesis/id17_id0_0000.mp4", "Celeb-synthesis/id17_id1_0000.mp4", "Celeb-synthesis/id17_id2_0000.mp4", "Celeb-synthesis/id17_id3_0000.mp4", "Celeb-synthesis/id17_id6_0000.mp4", "Celeb-synthesis/id17_id9_0000.mp4", "Celeb-synthesis/id17_id16_0000.mp4", "Celeb-synthesis/id16_id20_0000.mp4", "Celeb-synthesis/id17_id23_0000.mp4", "Celeb-synthesis/id3_id28_0001.mp4", "Celeb-synthesis/id35_id32_0007.mp4", "Celeb-synthesis/id30_id26_0004.mp4", "Celeb-synthesis/id16_id20_0006.mp4", "Celeb-synthesis/id4_id20_0001.mp4", "Celeb-synthesis/id26_id3_0002.mp4", "Celeb-synthesis/id20_id31_0006.mp4", "Celeb-synthesis/id6_id23_0001.mp4", "Celeb-synthesis/id9_id23_0009.mp4", "Celeb-synthesis/id32_id33_0002.mp4", "Celeb-synthesis/id16_id20_0012.mp4", "Celeb-synthesis/id29_id30_0000.mp4", "Celeb-synthesis/id3_id20_0008.mp4", "Celeb-synthesis/id22_id27_0001.mp4", "Celeb-synthesis/id27_id21_0002.mp4", "Celeb-synthesis/id29_id35_0000.mp4", "Celeb-synthesis/id21_id19_0005.mp4", "Celeb-synthesis/id23_id26_0003.mp4", "Celeb-synthesis/id30_id35_0009.mp4", "Celeb-synthesis/id9_id26_0000.mp4", "Celeb-synthesis/id33_id32_0006.mp4", "Celeb-synthesis/id30_id34_0003.mp4", "Celeb-synthesis/id29_id37_0008.mp4", "Celeb-synthesis/id35_id31_0006.mp4", "Celeb-synthesis/id37_id34_0008.mp4", "Celeb-synthesis/id26_id16_0001.mp4", "Celeb-synthesis/id17_id23_0009.mp4", "Celeb-synthesis/id6_id20_0007.mp4", "Celeb-synthesis/id1_id20_0001.mp4", "Celeb-synthesis/id1_id23_0006.mp4", "Celeb-synthesis/id37_id35_0001.mp4", "Celeb-synthesis/id4_id23_0006.mp4", "Celeb-synthesis/id17_id26_0006.mp4", "Celeb-synthesis/id20_id1_0007.mp4", "Celeb-synthesis/id0_id26_0009.mp4", "Celeb-synthesis/id38_id33_0005.mp4", "Celeb-synthesis/id28_id35_0008.mp4", "Celeb-synthesis/id23_id35_0006.mp4", "Celeb-synthesis/id6_id28_0002.mp4", "Celeb-synthesis/id35_id28_0006.mp4", "Celeb-synthesis/id32_id31_0008.mp4", "Celeb-synthesis/id38_id34_0004.mp4", "Celeb-synthesis/id3_id28_0009.mp4", "Celeb-synthesis/id37_id28_0007.mp4", "Celeb-synthesis/id1_id20_0002.mp4", "Celeb-synthesis/id37_id31_0008.mp4", "Celeb-synthesis/id30_id23_0007.mp4", "Celeb-synthesis/id28_id26_0000.mp4", "Celeb-synthesis/id2_id28_0003.mp4", "Celeb-synthesis/id27_id24_0007.mp4", "Celeb-synthesis/id30_id32_0006.mp4", "Celeb-synthesis/id35_id31_0009.mp4", "Celeb-synthesis/id4_id21_0004.mp4", "Celeb-synthesis/id37_id21_0005.mp4", "Celeb-synthesis/id30_id21_0002.mp4", "Celeb-synthesis/id16_id23_0011.mp4", "Celeb-synthesis/id9_id20_0002.mp4", "Celeb-synthesis/id6_id21_0006.mp4", "Celeb-synthesis/id20_id19_0002.mp4", "Celeb-synthesis/id28_id4_0006.mp4", "Celeb-synthesis/id35_id34_0002.mp4", "Celeb-synthesis/id35_id26_0003.mp4", "Celeb-synthesis/id22_id28_0006.mp4", "Celeb-synthesis/id30_id21_0005.mp4", "Celeb-synthesis/id24_id20_0009.mp4", "Celeb-synthesis/id4_id20_0000.mp4", "Celeb-synthesis/id2_id26_0001.mp4", "Celeb-synthesis/id21_id6_0005.mp4", "Celeb-synthesis/id21_id9_0008.mp4", "Celeb-synthesis/id22_id21_0005.mp4", "Celeb-synthesis/id22_id27_0005.mp4", "Celeb-synthesis/id23_id2_0007.mp4", "Celeb-synthesis/id23_id3_0009.mp4", "Celeb-synthesis/id24_id19_0000.mp4", "Celeb-synthesis/id24_id21_0006.mp4", "Celeb-synthesis/id24_id26_0009.mp4", "Celeb-synthesis/id25_id19_0002.mp4", "Celeb-synthesis/id25_id24_0003.mp4", "Celeb-synthesis/id27_id21_0008.mp4", "Celeb-synthesis/id27_id22_0007.mp4", "Celeb-synthesis/id27_id25_0008.mp4", "Celeb-synthesis/id28_id3_0004.mp4", "Celeb-synthesis/id28_id6_0006.mp4", "Celeb-synthesis/id29_id32_0000.mp4", "Celeb-synthesis/id29_id37_0009.mp4", "Celeb-synthesis/id30_id20_0004.mp4", "Celeb-synthesis/id30_id23_0002.mp4", "Celeb-synthesis/id32_id33_0004.mp4", "Celeb-synthesis/id33_id38_0001.mp4", "Celeb-synthesis/id34_id33_0005.mp4", "Celeb-synthesis/id35_id31_0007.mp4", "Celeb-synthesis/id49_id52_0005.mp4", "Celeb-synthesis/id9_id2_0006.mp4", "Celeb-synthesis/id7_id11_0007.mp4", "Celeb-synthesis/id4_id37_0006.mp4", "Celeb-synthesis/id37_id38_0009.mp4", "Celeb-synthesis/id29_id30_0009.mp4", "Celeb-synthesis/id0_id6_0007.mp4", "Celeb-synthesis/id0_id16_0004.mp4", "Celeb-synthesis/id31_id33_0008.mp4", "Celeb-synthesis/id54_id49_0003.mp4", "Celeb-synthesis/id0_id1_0000.mp4", "Celeb-synthesis/id21_id28_0001.mp4", "Celeb-synthesis/id33_id29_0004.mp4", "Celeb-synthesis/id28_id0_0009.mp4", "Celeb-synthesis/id6_id9_0006.mp4", "Celeb-synthesis/id9_id0_0006.mp4", "Celeb-synthesis/id26_id2_0005.mp4", "Celeb-synthesis/id1_id3_0002.mp4", "Celeb-synthesis/id4_id6_0008.mp4", "Celeb-synthesis/id16_id28_0005.mp4", "Celeb-synthesis/id37_id35_0005.mp4", "Celeb-synthesis/id19_id20_0004.mp4", "Celeb-synthesis/id46_id41_0000.mp4", "Celeb-synthesis/id51_id57_0004.mp4", "Celeb-synthesis/id29_id37_0005.mp4", "Celeb-synthesis/id35_id23_0007.mp4", "Celeb-synthesis/id34_id33_0002.mp4", "Celeb-synthesis/id1_id3_0006.mp4", "Celeb-synthesis/id13_id10_0005.mp4", "Celeb-synthesis/id56_id55_0009.mp4", "Celeb-synthesis/id25_id28_0010.mp4", "Celeb-synthesis/id20_id37_0004.mp4", "Celeb-synthesis/id37_id29_0002.mp4", "Celeb-synthesis/id56_id54_0007.mp4", "Celeb-synthesis/id19_id20_0000.mp4", "Celeb-synthesis/id4_id28_0006.mp4", "Celeb-synthesis/id53_id58_0005.mp4", "Celeb-synthesis/id55_id57_0002.mp4", "Celeb-synthesis/id24_id26_0004.mp4", "Celeb-synthesis/id20_id0_0006.mp4", "Celeb-synthesis/id37_id2_0009.mp4", "Celeb-synthesis/id30_id26_0006.mp4", "Celeb-synthesis/id16_id2_0001.mp4", "Celeb-synthesis/id26_id1_0002.mp4", "Celeb-synthesis/id30_id6_0007.mp4", "Celeb-synthesis/id44_id41_0005.mp4", "Celeb-synthesis/id16_id2_0006.mp4", "Celeb-synthesis/id1_id16_0004.mp4", "Celeb-synthesis/id16_id21_0002.mp4", "Celeb-synthesis/id4_id0_0000.mp4", "Celeb-synthesis/id8_id0_0002.mp4", "Celeb-synthesis/id19_id23_0001.mp4", "Celeb-synthesis/id37_id3_0006.mp4", "Celeb-synthesis/id9_id16_0007.mp4", "Celeb-synthesis/id47_id43_0007.mp4", "Celeb-synthesis/id16_id3_0009.mp4", "Celeb-synthesis/id26_id28_0002.mp4", "Celeb-synthesis/id8_id3_0003.mp4", "Celeb-synthesis/id30_id28_0000.mp4", "Celeb-synthesis/id27_id23_0008.mp4", "Celeb-synthesis/id28_id20_0008.mp4", "Celeb-synthesis/id1_id2_0002.mp4", "Celeb-synthesis/id46_id39_0000.mp4", "Celeb-synthesis/id37_id28_0008.mp4", "Celeb-synthesis/id0_id3_0007.mp4", "Celeb-synthesis/id4_id1_0002.mp4", "Celeb-synthesis/id13_id7_0000.mp4", "Celeb-synthesis/id50_id53_0000.mp4", "Celeb-synthesis/id50_id56_0005.mp4", "Celeb-synthesis/id4_id21_0009.mp4", "Celeb-synthesis/id23_id3_0004.mp4", "Celeb-synthesis/id56_id51_0000.mp4", "Celeb-synthesis/id30_id3_0006.mp4", "Celeb-synthesis/id28_id20_0006.mp4", "Celeb-synthesis/id4_id20_0008.mp4", "Celeb-synthesis/id54_id58_0006.mp4", "Celeb-synthesis/id53_id57_0005.mp4", "Celeb-synthesis/id31_id33_0009.mp4", "Celeb-synthesis/id0_id21_0000.mp4", "Celeb-synthesis/id6_id23_0006.mp4", "Celeb-synthesis/id48_id45_0002.mp4", "Celeb-synthesis/id46_id45_0001.mp4", "Celeb-synthesis/id28_id21_0006.mp4", "Celeb-synthesis/id12_id10_0005.mp4", "Celeb-synthesis/id54_id56_0000.mp4", "Celeb-synthesis/id39_id47_0004.mp4", "Celeb-synthesis/id9_id3_0009.mp4", "Celeb-synthesis/id35_id16_0007.mp4", "Celeb-synthesis/id21_id2_0002.mp4", "Celeb-synthesis/id12_id10_0002.mp4", "Celeb-synthesis/id10_id13_0007.mp4", "Celeb-synthesis/id20_id31_0008.mp4", "Celeb-synthesis/id0_id16_0003.mp4", "Celeb-synthesis/id0_id16_0007.mp4", "Celeb-synthesis/id2_id16_0004.mp4", "Celeb-synthesis/id13_id7_0012.mp4", "Celeb-synthesis/id37_id1_0002.mp4", "Celeb-synthesis/id30_id28_0004.mp4", "Celeb-synthesis/id53_id52_0003.mp4", "Celeb-synthesis/id54_id56_0006.mp4", "Celeb-synthesis/id3_id28_0002.mp4", "Celeb-synthesis/id37_id4_0000.mp4", "Celeb-synthesis/id28_id9_0000.mp4", "Celeb-synthesis/id4_id2_0003.mp4", "Celeb-synthesis/id25_id21_0005.mp4", "Celeb-synthesis/id17_id3_0007.mp4", "Celeb-synthesis/id2_id1_0004.mp4", "Celeb-synthesis/id3_id9_0003.mp4", "Celeb-synthesis/id16_id6_0001.mp4", "Celeb-synthesis/id8_id6_0002.mp4", "Celeb-synthesis/id17_id16_0007.mp4", "Celeb-synthesis/id4_id26_0007.mp4", "Celeb-synthesis/id44_id45_0000.mp4", "Celeb-synthesis/id0_id1_0005.mp4", "Celeb-synthesis/id57_id51_0000.mp4", "Celeb-synthesis/id34_id32_0007.mp4", "Celeb-synthesis/id32_id31_0006.mp4", "Celeb-synthesis/id48_id41_0001.mp4", "Celeb-synthesis/id4_id0_0004.mp4", "Celeb-synthesis/id21_id19_0009.mp4", "Celeb-synthesis/id45_id39_0008.mp4", "Celeb-synthesis/id31_id30_0009.mp4", "Celeb-synthesis/id27_id19_0001.mp4", "Celeb-synthesis/id23_id16_0003.mp4", "Celeb-synthesis/id58_id57_0008.mp4", "Celeb-synthesis/id17_id2_0007.mp4", "Celeb-synthesis/id28_id3_0001.mp4", "Celeb-synthesis/id23_id35_0009.mp4", "Celeb-synthesis/id4_id0_0001.mp4", "Celeb-synthesis/id17_id31_0009.mp4", "Celeb-synthesis/id48_id47_0008.mp4", "Celeb-synthesis/id50_id49_0001.mp4", "Celeb-synthesis/id20_id1_0003.mp4", "Celeb-synthesis/id16_id3_0010.mp4", "Celeb-synthesis/id23_id19_0000.mp4", "Celeb-synthesis/id1_id3_0009.mp4", "Celeb-synthesis/id43_id40_0005.mp4", "Celeb-synthesis/id4_id6_0002.mp4", "Celeb-synthesis/id10_id7_0008.mp4", "Celeb-synthesis/id13_id10_0008.mp4", "Celeb-synthesis/id12_id7_0006.mp4", "Celeb-synthesis/id6_id2_0008.mp4", "Celeb-synthesis/id2_id0_0002.mp4", "Celeb-synthesis/id2_id6_0002.mp4", "Celeb-synthesis/id30_id28_0006.mp4", "Celeb-synthesis/id52_id50_0007.mp4", "Celeb-synthesis/id49_id52_0007.mp4", "Celeb-synthesis/id51_id50_0008.mp4", "Celeb-synthesis/id21_id3_0009.mp4", "Celeb-synthesis/id31_id16_0002.mp4", "Celeb-synthesis/id25_id28_0003.mp4", "Celeb-synthesis/id21_id20_0006.mp4", "Celeb-synthesis/id10_id7_0005.mp4", "Celeb-synthesis/id38_id30_0006.mp4", "Celeb-synthesis/id35_id30_0006.mp4", "Celeb-synthesis/id20_id9_0008.mp4", "Celeb-synthesis/id25_id23_0010.mp4", "Celeb-synthesis/id17_id21_0000.mp4", "Celeb-synthesis/id45_id47_0002.mp4", "Celeb-synthesis/id1_id3_0003.mp4", "Celeb-synthesis/id27_id26_0006.mp4", "Celeb-synthesis/id44_id42_0001.mp4", "Celeb-synthesis/id57_id53_0006.mp4", "Celeb-synthesis/id43_id39_0000.mp4", "Celeb-synthesis/id35_id16_0004.mp4", "Celeb-synthesis/id42_id40_0001.mp4", "Celeb-synthesis/id21_id2_0000.mp4", "Celeb-synthesis/id37_id21_0000.mp4", "Celeb-synthesis/id29_id38_0008.mp4", "Celeb-synthesis/id39_id44_0000.mp4", "Celeb-synthesis/id9_id6_0005.mp4", "Celeb-synthesis/id0_id1_0001.mp4", "Celeb-synthesis/id31_id2_0004.mp4", "Celeb-synthesis/id38_id34_0003.mp4", "Celeb-synthesis/id56_id57_0007.mp4", "Celeb-synthesis/id52_id58_0005.mp4", "Celeb-synthesis/id28_id4_0000.mp4", "Celeb-synthesis/id22_id26_0005.mp4", "Celeb-synthesis/id4_id30_0000.mp4", "Celeb-synthesis/id29_id32_0003.mp4", "Celeb-synthesis/id35_id20_0007.mp4", "Celeb-synthesis/id1_id2_0007.mp4", "Celeb-synthesis/id30_id3_0002.mp4", "Celeb-synthesis/id22_id25_0001.mp4", "Celeb-synthesis/id39_id44_0008.mp4", "Celeb-synthesis/id34_id29_0008.mp4", "Celeb-synthesis/id21_id28_0009.mp4", "Celeb-synthesis/id30_id4_0001.mp4", "Celeb-synthesis/id25_id19_0008.mp4", "Celeb-synthesis/id21_id4_0002.mp4", "Celeb-synthesis/id17_id28_0001.mp4", "Celeb-synthesis/id6_id1_0007.mp4", "Celeb-synthesis/id9_id2_0008.mp4", "Celeb-synthesis/id8_id5_0008.mp4", "Celeb-synthesis/id37_id3_0004.mp4", "Celeb-synthesis/id17_id2_0003.mp"]
|
json_file/dfdc_files.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["bqdjzqhcft.mp4", "cttqtsjvgn.mp4", "aytzyidmgs.mp4", "arlmiizoob.mp4", "aevrfsexku.mp4", "ddepeddixj.mp4", "abofeumbvv.mp4", "avfitoutyn.mp4", "altziddtxi.mp4", "diopzaywor.mp4", "epymyyiblu.mp4", "cfxkpiweqt.mp4", "eajlrktemq.mp4", "dkhlttuvmx.mp4", "ehccixxzoe.mp4", "dakiztgtnw.mp4", "cdyakrxkia.mp4", "avvdgsennp.mp4", "clihsshdkq.mp4", "cknyxaqouy.mp4", "dqzreruvje.mp4", "caifxvsozs.mp4", "cwsbspfzck.mp4", "bkvetcojbt.mp4", "bwuwstvsbw.mp4", "ceymbecxnj.mp4", "cqhngvpgyi.mp4", "cgvrgibpfo.mp4", "dafhtipaml.mp4", "dptbnjnkdg.mp4", "eczrseixwq.mp4", "dtocdfbwca.mp4", "cmbzllswnl.mp4", "degpbqvcay.mp4", "eejswgycjc.mp4", "akzbnazxtz.mp4", "bulkxhhknf.mp4", "bqkdbcqjvb.mp4", "cwqlvzefpg.mp4", "dtbpmdqvao.mp4", "aelfnikyqj.mp4", "dkuayagnmc.mp4", "cobjrlugvp.mp4", "dlpoieqvfb.mp4", "dbzcqmxzaj.mp4", "erlvuvjsjf.mp4", "bqeiblbxtl.mp4", "ebebgmtlcu.mp4", "dzwkmcwkwl.mp4", "arrhsnjqku.mp4", "drcyabprvt.mp4", "eqjscdagiv.mp4", "bqnymlsayl.mp4", "cyboodqqyr.mp4", "errocgcham.mp4", "cxfujlvsuw.mp4", "cwwandrkus.mp4", "esckbnkkvb.mp4", "btiysiskpf.mp4", "abqwwspghj.mp4", "bmehkyanbj.mp4", "aknmpoonls.mp4", "eukvucdetx.mp4", "aufmsmnoye.mp4", "dbtbbhakdv.mp4", "dvumqqhoac.mp4", "cuzrgrbvil.mp4", "dhevettufk.mp4", "apogckdfrz.mp4", "bghphrsfxf.mp4", "edyncaijwx.mp4", "eivxffliio.mp4", "cyclgfjdrv.mp4", "ejkqesyvam.mp4", "cqrskwiqng.mp4", "dnyvfblxpm.mp4", "benmsfzfaz.mp4", "ayqvfdhslr.mp4", "aknbdpmgua.mp4", "ecujsjhscd.mp4", "dhcndnuwta.mp4", "ehevsxtecd.mp4", "alvgwypubw.mp4", "aklqzsddfl.mp4", "bopqhhalml.mp4", "ddhfabwpuz.mp4", "dhcselezer.mp4", "btjlfpzbdu.mp4", "dqppxmoqdl.mp4", "btunxncpjh.mp4", "chviwxsfhg.mp4", "dzyuwjkjui.mp4", "eggbjzxnmg.mp4", "dzieklokdr.mp4", "ekhacizpah.mp4", "beboztfcme.mp4", "brvqtabyxj.mp4", "btmsngnqhv.mp4", "cepxysienc.mp4", "eprybmbpba.mp4", "dkwjwbwgey.mp4", "ehieahnhte.mp4", "apatcsqejh.mp4", "aslsvlvpth.mp4", "dbnygxtwek.mp4", "ddjggcasdw.mp4", "azpuxunqyo.mp4", "bbhpvrmbse.mp4", "bweezhfpzp.mp4", "bxzakyopjf.mp4", "cvaksbpssm.mp4", "ecwaxgutkc.mp4", "awukslzjra.mp4", "bnbuonyoje.mp4", "byyqectxqa.mp4", "duvyaxbzvp.mp4", "bsqgziaylx.mp4", "asaxgevnnp.mp4", "arkroixhey.mp4", "axczxisdtb.mp4", "cferslmfwh.mp4", "beyebyhrph.mp4", "bmbbkwmxqj.mp4", "czfunozvwp.mp4", "afoovlsmtx.mp4", "bqtuuwzdtr.mp4", "btjwbtsgln.mp4", "bhaaboftbc.mp4", "bilnggbxgu.mp4", "dbhoxkblzx.mp4", "acifjvzvpm.mp4", "ddqccgmtka.mp4", "duzuusuajr.mp4", "dboxtiehng.mp4", "dxbqjxrhin.mp4", "dgxrqjdomn.mp4", "aapnvogymq.mp4", "bjsmaqefoi.mp4", "efdyrflcpg.mp4", "adohikbdaz.mp4", "ajwpjhrbcv.mp4", "bndybcqhfr.mp4", "ebkzwjgjhq.mp4", "atyntldecu.mp4", "agqphdxmwt.mp4", "eoewqcpbgt.mp4", "etejaapnxh.mp4", "bguwlyazau.mp4", "chtapglbcj.mp4", "avywawptfc.mp4", "diuzrpqjli.mp4", "dozyddhild.mp4", "cksanfsjhc.mp4", "djvutyvaio.mp4", "dkzvdrzcnr.mp4", "dzvyfiarrq.mp4", "ecnihjlfyt.mp4", "emfbhytfhc.mp4", "crktehraph.mp4", "cdphtzqrvp.mp4", "djxdyjopjd.mp4", "drgjzlxzxj.mp4", "elvvackpjh.mp4", "bdbhekrrwo.mp4", "dfbpceeaox.mp4", "aagfhgtpmv.mp4", "bhbdugnurr.mp4", "ckjaibzfxa.mp4", "abarnvbtwb.mp4", "avibnnhwhp.mp4", "awhmfnnjih.mp4", "bmioepcpsx.mp4", "eudeqjhdfd.mp4", "bmjzrlszhi.mp4", "bydaidkpdp.mp4", "axntxmycwd.mp4", "aorjvbyxhw.mp4", "adylbeequz.mp4", "asdpeebotb.mp4", "atvmxvwyns.mp4", "bpxckdzddv.mp4", "dgzklxjmix.mp4", "cdaxixbosp.mp4", "bdnaqemxmr.mp4", "bwhlgysghg.mp4", "cxttmymlbn.mp4", "ekkdjkirzq.mp4", "aelzhcnwgf.mp4", "dsgpbgsrdm.mp4", "efwfxwwlbw.mp4", "eqnoqyfquo.mp4", "crezycjqyk.mp4", "eiriyukqqy.mp4", "etmcruaihe.mp4", "dxuplhwvig.mp4", "cnilkgvfei.mp4", "axwgcsyphv.mp4", "byunigvnay.mp4", "bpwzipqtxf.mp4", "esyhwdfnxs.mp4", "btohlidmru.mp4", "bgvhtpzknn.mp4", "byfenovjnf.mp4", "bzythlfnhq.mp4", "cpjxareypw.mp4", "deyyistcrd.mp4", "czmqpxrqoh.mp4", "drtbksnpol.mp4", "asmpfjfzif.mp4", "blzydqdfem.mp4", "dulanfulol.mp4", "bdgipnyobr.mp4", "dvakowbgbt.mp4", "aettqgevhz.mp4", "dqnyszdong.mp4", "bchnbulevv.mp4", "atzdznmder.mp4", "crzfebnfgb.mp4", "cwrtyzndpx.mp4", "etdcqxabww.mp4", "bjjbwsqjir.mp4", "azsmewqghg.mp4", "bqhtpqmmqp.mp4", "czkdanyadc.mp4", "cfyduhpbps.mp4", "erqgqacbqe.mp4", "dgmevclvzy.mp4", "bjkmjilrxp.mp4", "akvmwkdyuv.mp4", "augtsuxpzc.mp4", "esxrvsgpvb.mp4", "alaijyygdv.mp4", "eekozbeafq.mp4", "cmxcfkrjiv.mp4", "dcuiiorugd.mp4", "adhsbajydo.mp4", "dsjbknkujw.mp4", "byofowlkki.mp4", "avssvvsdhz.mp4", "eebserckhh.mp4", "bggsurpgpr.mp4", "alninxcyhg.mp4", "awnwkrqibf.mp4", "avgiuextiz.mp4", "bsfmwclnqy.mp4", "btxlttbpkj.mp4", "bmjmjmbglm.mp4", "cglxirfaey.mp4", "ddpvuimigj.mp4", "ahqqqilsxt.mp4", "bffwsjxghk.mp4", "eeyhxisdfh.mp4", "dxuliowugt.mp4", "agdkmztvby.mp4", "axoygtekut.mp4", "eebrkicpry.mp4", "chzieimrwu.mp4", "drsakwyvqv.mp4", "ehtdtkmmli.mp4", "byijojkdba.mp4", "bntlodcfeg.mp4", "etohcvnzbj.mp4", "dlrsbscitn.mp4", "clrycekyst.mp4", "cxrfacemmq.mp4", "egbbcxcuqy.mp4", "ahdbuwqxit.mp4", "bkmdzhfzfh.mp4", "bourlmzsio.mp4", "dkdwxmtpuo.mp4", "aczrgyricp.mp4", "bgmlwsoamc.mp4", "axwovszumc.mp4", "acxnxvbsxk.mp4", "bejhvclboh.mp4", "bofqajtwve.mp4", "bddjdhzfze.mp4", "bvgwelbeof.mp4", "ctpqeykqdp.mp4", "deywhkarol.mp4", "dhoqofwoxa.mp4", "akxoopqjqz.mp4", "andaxzscny.mp4", "dntkzzzcdh.mp4", "bzmdrafeex.mp4", "cppdvdejkc.mp4", "diomeixhrg.mp4", "coadfnerlk.mp4", "eahlqmfvtj.mp4", "ciyoudyhly.mp4", "cycacemkmt.mp4", "ccfoszqabv.mp4", "cyxlcuyznd.mp4", "bpapbctoao.mp4", "dwediigjit.mp4", "doanjploai.mp4", "dofusvhnib.mp4", "boovltmuwi.mp4", "dbhrpizyeq.mp4", "agrmhtjdlk.mp4", "djvtbgwdcc.mp4", "esnntzzajv.mp4", "aqpnvjhuzw.mp4", "atxvxouljq.mp4", "bdxuhamuqx.mp4", "aipfdnwpoo.mp4", "dhjmzhrcav.mp4", "bnjcdrfuov.mp4", "cizlkenljw.mp4", "cqfugiqupm.mp4", "avnqydkqjj.mp4", "bgwmmujlmc.mp4", "curpwogllm.mp4", "ckbdwedgmc.mp4", "ccmonzqfrz.mp4", "dbzpcjntve.mp4", "btugrnoton.mp4", "byqzyxifza.mp4", "bmhvktyiwp.mp4", "ckkuyewywx.mp4", "bhsluedavd.mp4", "eiwopxzjfn.mp4", "dhkwmjxwrn.mp4", "bahdpoesir.mp4", "ellavthztb.mp4", "dsdoseflas.mp4", "dptrzdvwpg.mp4", "atkdltyyen.mp4", "dqqtjcryjv.mp4", "cettndmvzl.mp4", "duycddgtrl.mp4", "dzqwgqewhu.mp4", "amowujxmzc.mp4", "ensyyivobf.mp4", "ahfazfbntc.mp4", "brwrlczjvi.mp4", "ehbnclaukr.mp4", "avmjormvsx.mp4", "dnexlwbcxq.mp4", "eepezmygaq.mp4", "ctzmavwror.mp4", "dqswpjoepo.mp4", "cprhtltsjp.mp4", "bqqpbzjgup.mp4", "ahbweevwpv.mp4", "dubiroskqn.mp4", "ecuvtoltue.mp4", "bseamdrpbj.mp4", "ajqslcypsw.mp4", "dkrvorliqc.mp4", "ebywfrmhtd.mp4", "avtycwsgyb.mp4", "emgjphonqb.mp4", "esyrimvzsa.mp4", "cbltdtxglo.mp4", "aybgughjxh.mp4", "caqbrkogkb.mp4", "eixwxvxbbn.mp4", "ehfiekigla.mp4", "eckvhdusax.mp4", "amaivqofda.mp4", "diqraixiov.mp4", "cbbibzcoih.mp4", "bkwxhglwct.mp4", "ekcrtigpab.mp4", "bgaogsjehq.mp4", "dnhvalzvrt.mp4", "esgftaficx.mp4", "bhpwpydzpo.mp4", "cdbsbdymzd.mp4", "dhxctgyoqj.mp4", "aneclqfpbt.mp4", "dakqwktlbi.mp4", "ebeknhudxq.mp4", "ebchwmwayp.mp4", "dsndhujjjb.mp4", "anpuvshzoo.mp4", "brhalypwoo.mp4", "ehdkmxgtxh.mp4", "eqvuznuwsa.mp4", "aladcziidp.mp4", "bbhtdfuqxq.mp4", "covdcysmbi.mp4", "asvcrfdpnq.mp4", "dcamvmuors.mp4", "acqfdwsrhi.mp4", "blpchvmhxx.mp4", "emaalmsonj.mp4", "bbvgxeczei.mp4", "bwipwzzxxu.mp4", "egghxjjmfg.mp4", "acxwigylke.mp4", "cwbacdwrzo.mp4", "bctvsmddgq.mp4", "cffffbcywc.mp4", "aybumesmpk.mp4", "bvzjkezkms.mp4", "cthdnahrkh.mp4", "apgjqzkoma.mp4", "elginszwtk.mp4"]
|
json_file/ff_file_list.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["01__exit_phone_room_actors_c23.mp4", "01__hugging_happy_actors_c23.mp4", "01__kitchen_pan_actors_c23.mp4", "01__kitchen_still_actors_c23.mp4", "01__meeting_serious_actors_c23.mp4", "01__outside_talking_pan_laughing_actors_c23.mp4", "01__outside_talking_still_laughing_actors_c23.mp4", "01__podium_speech_happy_actors_c23.mp4", "01__secret_conversation_actors_c23.mp4", "01__talking_against_wall_actors_c23.mp4", "01__talking_angry_couch_actors_c23.mp4", "01__walking_and_outside_surprised_actors_c23.mp4", "01__walking_down_indoor_hall_disgust_actors_c23.mp4", "01__walking_down_street_outside_angry_actors_c23.mp4", "01__walking_outside_cafe_disgusted_actors_c23.mp4", "01__walk_down_hall_angry_actors_c23.mp4", "02__exit_phone_room_actors_c23.mp4", "02__hugging_happy_actors_c23.mp4", "02__kitchen_pan_actors_c23.mp4", "02__kitchen_still_actors_c23.mp4", "02__meeting_serious_actors_c23.mp4", "02__outside_talking_pan_laughing_actors_c23.mp4", "02__outside_talking_still_laughing_actors_c23.mp4", "02__podium_speech_happy_actors_c23.mp4", "02__secret_conversation_actors_c23.mp4", "02__talking_against_wall_actors_c23.mp4", "02__talking_angry_couch_actors_c23.mp4", "02__walking_and_outside_surprised_actors_c23.mp4", "02__walking_down_indoor_hall_disgust_actors_c23.mp4", "02__walking_down_street_outside_angry_actors_c23.mp4", "02__walking_outside_cafe_disgusted_actors_c23.mp4", "02__walk_down_hall_angry_actors_c23.mp4", "03__exit_phone_room_actors_c23.mp4", "03__hugging_happy_actors_c23.mp4", "03__kitchen_pan_actors_c23.mp4", "03__kitchen_still_actors_c23.mp4", "03__meeting_serious_actors_c23.mp4", "03__outside_talking_pan_laughing_actors_c23.mp4", "03__outside_talking_still_laughing_actors_c23.mp4", "03__podium_speech_happy_actors_c23.mp4", "03__secret_conversation_actors_c23.mp4", "03__talking_against_wall_actors_c23.mp4", "03__talking_angry_couch_actors_c23.mp4", "03__walking_and_outside_surprised_actors_c23.mp4", "03__walking_down_indoor_hall_disgust_actors_c23.mp4", "03__walking_down_street_outside_angry_actors_c23.mp4", "03__walking_outside_cafe_disgusted_actors_c23.mp4", "03__walk_down_hall_angry_actors_c23.mp4", "04__exit_phone_room_actors_c23.mp4", "04__kitchen_pan_actors_c23.mp4", "04__kitchen_still_actors_c23.mp4", "04__outside_talking_pan_laughing_actors_c23.mp4", "04__outside_talking_still_laughing_actors_c23.mp4", "04__podium_speech_happy_actors_c23.mp4", "04__secret_conversation_actors_c23.mp4", "04__talking_against_wall_actors_c23.mp4", "04__talking_angry_couch_actors_c23.mp4", "04__walking_down_street_outside_angry_actors_c23.mp4", "04__walking_outside_cafe_disgusted_actors_c23.mp4", "04__walk_down_hall_angry_actors_c23.mp4", "05__exit_phone_room_actors_c23.mp4", "05__hugging_happy_actors_c23.mp4", "05__kitchen_pan_actors_c23.mp4", "05__kitchen_still_actors_c23.mp4", "05__outside_talking_pan_laughing_actors_c23.mp4", "05__outside_talking_still_laughing_actors_c23.mp4", "05__podium_speech_happy_actors_c23.mp4", "05__talking_against_wall_actors_c23.mp4", "05__walking_down_street_outside_angry_actors_c23.mp4", "05__walking_outside_cafe_disgusted_actors_c23.mp4", "05__walk_down_hall_angry_actors_c23.mp4", "06__exit_phone_room_actors_c23.mp4", "06__hugging_happy_actors_c23.mp4", "06__kitchen_pan_actors_c23.mp4", "06__kitchen_still_actors_c23.mp4", "06__outside_talking_pan_laughing_actors_c23.mp4", "06__outside_talking_still_laughing_actors_c23.mp4", "06__podium_speech_happy_actors_c23.mp4", "06__talking_against_wall_actors_c23.mp4", "06__talking_angry_couch_actors_c23.mp4", "06__walking_and_outside_surprised_actors_c23.mp4", "06__walking_down_indoor_hall_disgust_actors_c23.mp4", "06__walking_down_street_outside_angry_actors_c23.mp4", "06__walking_outside_cafe_disgusted_actors_c23.mp4", "06__walk_down_hall_angry_actors_c23.mp4", "07__exit_phone_room_actors_c23.mp4", "07__hugging_happy_actors_c23.mp4", "07__kitchen_pan_actors_c23.mp4", "07__kitchen_still_actors_c23.mp4", "07__outside_talking_pan_laughing_actors_c23.mp4", "07__outside_talking_still_laughing_actors_c23.mp4", "07__podium_speech_happy_actors_c23.mp4", "07__secret_conversation_actors_c23.mp4", "07__talking_against_wall_actors_c23.mp4", "07__talking_angry_couch_actors_c23.mp4", "07__walking_down_street_outside_angry_actors_c23.mp4", "07__walking_outside_cafe_disgusted_actors_c23.mp4", "07__walk_down_hall_angry_actors_c23.mp4", "08__exit_phone_room_actors_c23.mp4", "08__kitchen_pan_actors_c23.mp4", "08__kitchen_still_actors_c23.mp4", "08__outside_talking_pan_laughing_actors_c23.mp4", "08__outside_talking_still_laughing_actors_c23.mp4", "08__podium_speech_happy_actors_c23.mp4", "08__talking_against_wall_actors_c23.mp4", "08__walking_down_street_outside_angry_actors_c23.mp4", "08__walking_outside_cafe_disgusted_actors_c23.mp4", "08__walk_down_hall_angry_actors_c23.mp4", "09__exit_phone_room_actors_c23.mp4", "09__kitchen_pan_actors_c23.mp4", "09__outside_talking_pan_laughing_actors_c23.mp4", "09__outside_talking_still_laughing_actors_c23.mp4", "09__podium_speech_happy_actors_c23.mp4", "09__talking_against_wall_actors_c23.mp4", "09__talking_angry_couch_actors_c23.mp4", "09__walking_down_street_outside_angry_actors_c23.mp4", "09__walk_down_hall_angry_actors_c23.mp4", "10__exit_phone_room_actors_c23.mp4", "10__kitchen_pan_actors_c23.mp4", "10__kitchen_still_actors_c23.mp4", "10__outside_talking_pan_laughing_actors_c23.mp4", "10__outside_talking_still_laughing_actors_c23.mp4", "10__podium_speech_happy_actors_c23.mp4", "10__talking_against_wall_actors_c23.mp4", "10__talking_angry_couch_actors_c23.mp4", "10__walking_down_street_outside_angry_actors_c23.mp4", "10__walking_outside_cafe_disgusted_actors_c23.mp4", "10__walk_down_hall_angry_actors_c23.mp4", "11__exit_phone_room_actors_c23.mp4", "11__kitchen_pan_actors_c23.mp4", "11__kitchen_still_actors_c23.mp4", "11__outside_talking_pan_laughing_actors_c23.mp4", "11__outside_talking_still_laughing_actors_c23.mp4", "11__podium_speech_happy_actors_c23.mp4", "11__secret_conversation_actors_c23.mp4", "11__talking_against_wall_actors_c23.mp4", "11__talking_angry_couch_actors_c23.mp4", "11__walking_down_street_outside_angry_actors_c23.mp4", "11__walking_outside_cafe_disgusted_actors_c23.mp4", "11__walk_down_hall_angry_actors_c23.mp4", "12__exit_phone_room_actors_c23.mp4", "12__hugging_happy_actors_c23.mp4", "12__kitchen_pan_actors_c23.mp4", "12__kitchen_still_actors_c23.mp4", "12__outside_talking_pan_laughing_actors_c23.mp4", "12__outside_talking_still_laughing_actors_c23.mp4", "12__podium_speech_happy_actors_c23.mp4", "12__secret_conversation_actors_c23.mp4", "12__talking_against_wall_actors_c23.mp4", "12__talking_angry_couch_actors_c23.mp4", "12__walking_and_outside_surprised_actors_c23.mp4", "12__walking_down_indoor_hall_disgust_actors_c23.mp4", "12__walking_down_street_outside_angry_actors_c23.mp4", "12__walking_outside_cafe_disgusted_actors_c23.mp4", "12__walk_down_hall_angry_actors_c23.mp4", "13__exit_phone_room_actors_c23.mp4", "13__hugging_happy_actors_c23.mp4", "13__kitchen_pan_actors_c23.mp4", "13__kitchen_still_actors_c23.mp4", "13__outside_talking_pan_laughing_actors_c23.mp4", "13__outside_talking_still_laughing_actors_c23.mp4", "13__podium_speech_happy_actors_c23.mp4", "13__secret_conversation_actors_c23.mp4", "13__talking_against_wall_actors_c23.mp4", "13__talking_angry_couch_actors_c23.mp4", "13__walking_and_outside_surprised_actors_c23.mp4", "13__walking_down_indoor_hall_disgust_actors_c23.mp4", "13__walking_down_street_outside_angry_actors_c23.mp4", "13__walking_outside_cafe_disgusted_actors_c23.mp4", "13__walk_down_hall_angry_actors_c23.mp4", "14__exit_phone_room_actors_c23.mp4", "14__hugging_happy_actors_c23.mp4", "14__kitchen_pan_actors_c23.mp4", "14__kitchen_still_actors_c23.mp4", "14__outside_talking_pan_laughing_actors_c23.mp4", "14__outside_talking_still_laughing_actors_c23.mp4", "14__podium_speech_happy_actors_c23.mp4", "14__secret_conversation_actors_c23.mp4", "14__talking_against_wall_actors_c23.mp4", "14__talking_angry_couch_actors_c23.mp4", "14__walking_and_outside_surprised_actors_c23.mp4", "14__walking_down_indoor_hall_disgust_actors_c23.mp4", "14__walking_down_street_outside_angry_actors_c23.mp4", "14__walking_outside_cafe_disgusted_actors_c23.mp4", "14__walk_down_hall_angry_actors_c23.mp4", "15__exit_phone_room_actors_c23.mp4", "15__hugging_happy_actors_c23.mp4", "15__kitchen_pan_actors_c23.mp4", "15__kitchen_still_actors_c23.mp4", "15__outside_talking_pan_laughing_actors_c23.mp4", "15__outside_talking_still_laughing_actors_c23.mp4", "15__podium_speech_happy_actors_c23.mp4", "15__talking_against_wall_actors_c23.mp4", "15__talking_angry_couch_actors_c23.mp4", "15__walking_and_outside_surprised_actors_c23.mp4", "15__walking_down_indoor_hall_disgust_actors_c23.mp4", "15__walking_down_street_outside_angry_actors_c23.mp4", "15__walking_outside_cafe_disgusted_actors_c23.mp4", "15__walk_down_hall_angry_actors_c23.mp4", "16__exit_phone_room_actors_c23.mp4", "16__hugging_happy_actors_c23.mp4", "16__kitchen_pan_actors_c23.mp4", "16__kitchen_still_actors_c23.mp4", "16__outside_talking_pan_laughing_actors_c23.mp4", "950_836_neuralTextures.mp4", "951_947_neuralTextures.mp4", "952_882_neuralTextures.mp4", "953_974_neuralTextures.mp4", "954_976_neuralTextures.mp4", "955_078_neuralTextures.mp4", "956_958_neuralTextures.mp4", "957_959_neuralTextures.mp4", "958_956_neuralTextures.mp4", "959_957_neuralTextures.mp4", "960_999_neuralTextures.mp4", "961_069_neuralTextures.mp4", "962_929_neuralTextures.mp4", "963_879_neuralTextures.mp4", "964_174_neuralTextures.mp4", "965_948_neuralTextures.mp4", "966_988_neuralTextures.mp4", "967_984_neuralTextures.mp4", "968_884_neuralTextures.mp4", "969_897_neuralTextures.mp4", "970_973_neuralTextures.mp4", "971_564_neuralTextures.mp4", "972_718_neuralTextures.mp4", "973_970_neuralTextures.mp4", "974_953_neuralTextures.mp4", "975_978_neuralTextures.mp4", "976_954_neuralTextures.mp4", "977_075_neuralTextures.mp4", "978_975_neuralTextures.mp4", "979_875_neuralTextures.mp4", "980_992_neuralTextures.mp4", "981_985_neuralTextures.mp4", "982_004_neuralTextures.mp4", "983_113_neuralTextures.mp4", "984_967_neuralTextures.mp4", "985_981_neuralTextures.mp4", "986_994_neuralTextures.mp4", "987_938_neuralTextures.mp4", "988_966_neuralTextures.mp4", "989_993_neuralTextures.mp4", "990_008_neuralTextures.mp4", "991_064_neuralTextures.mp4", "992_980_neuralTextures.mp4", "993_989_neuralTextures.mp4", "994_986_neuralTextures.mp4", "995_233_neuralTextures.mp4", "996_056_neuralTextures.mp4", "997_040_neuralTextures.mp4", "998_561_neuralTextures.mp4", "999_960_neuralTextures.mp4", "950_836_face2Face.mp4", "951_947_face2Face.mp4", "952_882_face2Face.mp4", "953_974_face2Face.mp4", "954_976_face2Face.mp4", "955_078_face2Face.mp4", "956_958_face2Face.mp4", "957_959_face2Face.mp4", "958_956_face2Face.mp4", "959_957_face2Face.mp4", "960_999_face2Face.mp4", "961_069_face2Face.mp4", "962_929_face2Face.mp4", "963_879_face2Face.mp4", "964_174_face2Face.mp4", "965_948_face2Face.mp4", "966_988_face2Face.mp4", "967_984_face2Face.mp4", "968_884_face2Face.mp4", "969_897_face2Face.mp4", "970_973_face2Face.mp4", "971_564_face2Face.mp4", "972_718_face2Face.mp4", "973_970_face2Face.mp4", "974_953_face2Face.mp4", "975_978_face2Face.mp4", "976_954_face2Face.mp4", "977_075_face2Face.mp4", "978_975_face2Face.mp4", "979_875_face2Face.mp4", "980_992_face2Face.mp4", "981_985_face2Face.mp4", "982_004_face2Face.mp4", "983_113_face2Face.mp4", "984_967_face2Face.mp4", "985_981_face2Face.mp4", "986_994_face2Face.mp4", "987_938_face2Face.mp4", "988_966_face2Face.mp4", "989_993_face2Face.mp4", "990_008_face2Face.mp4", "991_064_face2Face.mp4", "992_980_face2Face.mp4", "993_989_face2Face.mp4", "994_986_face2Face.mp4", "995_233_face2Face.mp4", "996_056_face2Face.mp4", "997_040_face2Face.mp4", "998_561_face2Face.mp4", "999_960_face2Face.mp4", "249_280c23_deepfakes.mp4", "296_293c23_deepfakes.mp4", "513_305c23_deepfakes.mp4", "950_836c23_deepfakes.mp4", "951_947c23_deepfakes.mp4", "952_882c23_deepfakes.mp4", "953_974c23_deepfakes.mp4", "954_976c23_deepfakes.mp4", "955_078c23_deepfakes.mp4", "956_958c23_deepfakes.mp4", "957_959c23_deepfakes.mp4", "958_956c23_deepfakes.mp4", "959_957c23_deepfakes.mp4", "960_999c23_deepfakes.mp4", "961_069c23_deepfakes.mp4", "962_929c23_deepfakes.mp4", "963_879c23_deepfakes.mp4", "964_174c23_deepfakes.mp4", "965_948c23_deepfakes.mp4", "966_988c23_deepfakes.mp4", "967_984c23_deepfakes.mp4", "968_884c23_deepfakes.mp4", "969_897c23_deepfakes.mp4", "970_973c23_deepfakes.mp4", "971_564c23_deepfakes.mp4", "972_718c23_deepfakes.mp4", "973_970c23_deepfakes.mp4", "974_953c23_deepfakes.mp4", "975_978c23_deepfakes.mp4", "976_954c23_deepfakes.mp4", "977_075c23_deepfakes.mp4", "978_975c23_deepfakes.mp4", "979_875c23_deepfakes.mp4", "980_992c23_deepfakes.mp4", "981_985c23_deepfakes.mp4", "982_004c23_deepfakes.mp4", "983_113c23_deepfakes.mp4", "984_967c23_deepfakes.mp4", "985_981c23_deepfakes.mp4", "986_994c23_deepfakes.mp4", "987_938c23_deepfakes.mp4", "988_966c23_deepfakes.mp4", "989_993c23_deepfakes.mp4", "990_008c23_deepfakes.mp4", "991_064c23_deepfakes.mp4", "992_980c23_deepfakes.mp4", "993_989c23_deepfakes.mp4", "994_986c23_deepfakes.mp4", "995_233c23_deepfakes.mp4", "996_056c23_deepfakes.mp4", "997_040c23_deepfakes.mp4", "998_561c23_deepfakes.mp4", "999_960c23_deepfakes.mp4", "950_836c40_Deepfakes.mp4", "951_947c40_Deepfakes.mp4", "952_882c40_Deepfakes.mp4", "953_974c40_Deepfakes.mp4", "954_976c40_Deepfakes.mp4", "955_078c40_Deepfakes.mp4", "956_958c40_Deepfakes.mp4", "957_959c40_Deepfakes.mp4", "958_956c40_Deepfakes.mp4", "959_957c40_Deepfakes.mp4", "960_999c40_Deepfakes.mp4", "961_069c40_Deepfakes.mp4", "962_929c40_Deepfakes.mp4", "963_879c40_Deepfakes.mp4", "964_174c40_Deepfakes.mp4", "965_948c40_Deepfakes.mp4", "966_988c40_Deepfakes.mp4", "967_984c40_Deepfakes.mp4", "968_884c40_Deepfakes.mp4", "969_897c40_Deepfakes.mp4", "970_973c40_Deepfakes.mp4", "971_564c40_Deepfakes.mp4", "972_718c40_Deepfakes.mp4", "973_970c40_Deepfakes.mp4", "974_953c40_Deepfakes.mp4", "975_978c40_Deepfakes.mp4", "976_954c40_Deepfakes.mp4", "977_075c40_Deepfakes.mp4", "978_975c40_Deepfakes.mp4", "979_875c40_Deepfakes.mp4", "980_992c40_Deepfakes.mp4", "981_985c40_Deepfakes.mp4", "982_004c40_Deepfakes.mp4", "983_113c40_Deepfakes.mp4", "984_967c40_Deepfakes.mp4", "985_981c40_Deepfakes.mp4", "986_994c40_Deepfakes.mp4", "987_938c40_Deepfakes.mp4", "988_966c40_Deepfakes.mp4", "989_993c40_Deepfakes.mp4", "990_008c40_Deepfakes.mp4", "991_064c40_Deepfakes.mp4", "992_980c40_Deepfakes.mp4", "993_989c40_Deepfakes.mp4", "994_986c40_Deepfakes.mp4", "995_233c40_Deepfakes.mp4", "996_056c40_Deepfakes.mp4", "997_040c40_Deepfakes.mp4", "998_561c40_Deepfakes.mp4", "999_960c40_Deepfakes.mp4"]
|
model/__init__.py
ADDED
File without changes
|
model/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (152 Bytes). View file
|
|
model/__pycache__/config.cpython-311.pyc
ADDED
Binary file (709 Bytes). View file
|
|
model/__pycache__/face_detection.cpython-311.pyc
ADDED
Binary file (2.24 kB). View file
|
|
model/__pycache__/genconvit.cpython-311.pyc
ADDED
Binary file (4.89 kB). View file
|
|
model/__pycache__/genconvit_ed.cpython-311.pyc
ADDED
Binary file (6 kB). View file
|
|
model/__pycache__/genconvit_vae.cpython-311.pyc
ADDED
Binary file (8.13 kB). View file
|
|
model/__pycache__/model_embedder.cpython-311.pyc
ADDED
Binary file (3.34 kB). View file
|
|
model/__pycache__/pred_func.cpython-311.pyc
ADDED
Binary file (6.11 kB). View file
|
|
model/config.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import os
|
3 |
+
|
4 |
+
#read yaml file
|
5 |
+
|
6 |
+
def load_config():
|
7 |
+
with open(os.path.join('model','config.yaml')) as file:
|
8 |
+
config= yaml.safe_load(file)
|
9 |
+
|
10 |
+
return config
|
model/config.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
backbone: convnext_tiny
|
3 |
+
embedder: swin_tiny_patch4_window7_224
|
4 |
+
latent_dims: 12544
|
5 |
+
|
6 |
+
batch_size: 32
|
7 |
+
epoch: 1
|
8 |
+
learning_rate: 0.0001
|
9 |
+
weight_decay: 0.0001
|
10 |
+
num_classes: 2
|
11 |
+
img_size: 224
|
12 |
+
min_val_loss: 10000
|
model/face_detection.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
def detect_faces(frames, min_face_size=30):
|
6 |
+
"""
|
7 |
+
Detect faces in frames using OpenCV's Haar Cascade classifier instead of dlib
|
8 |
+
|
9 |
+
Args:
|
10 |
+
frames: List of frames to detect faces in
|
11 |
+
min_face_size: Minimum face size to detect
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
Tuple of (face_frames, count) where face_frames is a numpy array of detected faces
|
15 |
+
and count is the number of faces detected
|
16 |
+
"""
|
17 |
+
# Initialize face detector
|
18 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
19 |
+
|
20 |
+
# Initialize array to store faces
|
21 |
+
temp_face = np.zeros((len(frames), 224, 224, 3), dtype=np.uint8)
|
22 |
+
count = 0
|
23 |
+
|
24 |
+
# Process each frame
|
25 |
+
for _, frame in tqdm(enumerate(frames), total=len(frames)):
|
26 |
+
# Convert to grayscale for face detection
|
27 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
28 |
+
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
|
29 |
+
|
30 |
+
# Detect faces
|
31 |
+
faces = face_cascade.detectMultiScale(
|
32 |
+
gray,
|
33 |
+
scaleFactor=1.1,
|
34 |
+
minNeighbors=5,
|
35 |
+
minSize=(min_face_size, min_face_size)
|
36 |
+
)
|
37 |
+
|
38 |
+
# Process each detected face
|
39 |
+
for (x, y, w, h) in faces:
|
40 |
+
if count < len(frames):
|
41 |
+
# Extract and resize face
|
42 |
+
face_image = frame[y:y+h, x:x+w]
|
43 |
+
face_image = cv2.resize(face_image, (224, 224), interpolation=cv2.INTER_AREA)
|
44 |
+
|
45 |
+
# Store face
|
46 |
+
temp_face[count] = face_image
|
47 |
+
count += 1
|
48 |
+
else:
|
49 |
+
break
|
50 |
+
|
51 |
+
return ([], 0) if count == 0 else (temp_face[:count], count)
|
model/genconvit.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .genconvit_ed import GenConViTED
|
4 |
+
from .genconvit_vae import GenConViTVAE
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
class GenConViT(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self, config, ed, vae, net, fp16):
|
10 |
+
super(GenConViT, self).__init__()
|
11 |
+
self.net = net
|
12 |
+
self.fp16 = fp16
|
13 |
+
if self.net=='ed':
|
14 |
+
try:
|
15 |
+
self.model_ed = GenConViTED(config)
|
16 |
+
self.checkpoint_ed = torch.load(f'weight/{ed}.pth', map_location=torch.device('cpu'))
|
17 |
+
|
18 |
+
if 'state_dict' in self.checkpoint_ed:
|
19 |
+
self.model_ed.load_state_dict(self.checkpoint_ed['state_dict'])
|
20 |
+
else:
|
21 |
+
self.model_ed.load_state_dict(self.checkpoint_ed)
|
22 |
+
|
23 |
+
self.model_ed.eval()
|
24 |
+
if self.fp16:
|
25 |
+
self.model_ed.half()
|
26 |
+
except FileNotFoundError:
|
27 |
+
raise Exception(f"Error: weight/{ed}.pth file not found.")
|
28 |
+
elif self.net=='vae':
|
29 |
+
try:
|
30 |
+
self.model_vae = GenConViTVAE(config)
|
31 |
+
self.checkpoint_vae = torch.load(f'weight/{vae}.pth', map_location=torch.device('cpu'))
|
32 |
+
|
33 |
+
if 'state_dict' in self.checkpoint_vae:
|
34 |
+
self.model_vae.load_state_dict(self.checkpoint_vae['state_dict'])
|
35 |
+
else:
|
36 |
+
self.model_vae.load_state_dict(self.checkpoint_vae)
|
37 |
+
|
38 |
+
self.model_vae.eval()
|
39 |
+
if self.fp16:
|
40 |
+
self.model_vae.half()
|
41 |
+
except FileNotFoundError:
|
42 |
+
raise Exception(f"Error: weight/{vae}.pth file not found.")
|
43 |
+
else:
|
44 |
+
try:
|
45 |
+
self.model_ed = GenConViTED(config)
|
46 |
+
self.model_vae = GenConViTVAE(config)
|
47 |
+
self.checkpoint_ed = torch.load(f'weight/{ed}.pth', map_location=torch.device('cpu'))
|
48 |
+
self.checkpoint_vae = torch.load(f'weight/{vae}.pth', map_location=torch.device('cpu'))
|
49 |
+
if 'state_dict' in self.checkpoint_ed:
|
50 |
+
self.model_ed.load_state_dict(self.checkpoint_ed['state_dict'])
|
51 |
+
else:
|
52 |
+
self.model_ed.load_state_dict(self.checkpoint_ed)
|
53 |
+
if 'state_dict' in self.checkpoint_vae:
|
54 |
+
self.model_vae.load_state_dict(self.checkpoint_vae['state_dict'])
|
55 |
+
else:
|
56 |
+
self.model_vae.load_state_dict(self.checkpoint_vae)
|
57 |
+
self.model_ed.eval()
|
58 |
+
self.model_vae.eval()
|
59 |
+
if self.fp16:
|
60 |
+
self.model_ed.half()
|
61 |
+
self.model_vae.half()
|
62 |
+
except FileNotFoundError as e:
|
63 |
+
raise Exception(f"Error: Model weights file not found.")
|
64 |
+
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
if self.net == 'ed' :
|
68 |
+
x = self.model_ed(x)
|
69 |
+
elif self.net == 'vae':
|
70 |
+
x,_ = self.model_vae(x)
|
71 |
+
else:
|
72 |
+
x1 = self.model_ed(x)
|
73 |
+
x2,_ = self.model_vae(x)
|
74 |
+
x = torch.cat((x1, x2), dim=0) #(x1+x2)/2 #
|
75 |
+
return x
|
model/genconvit_ed.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms
|
4 |
+
from timm import create_model
|
5 |
+
import timm
|
6 |
+
from .model_embedder import HybridEmbed
|
7 |
+
|
8 |
+
class Encoder(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
self.features = nn.Sequential(
|
14 |
+
nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
15 |
+
nn.ReLU(inplace=True),
|
16 |
+
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
|
17 |
+
|
18 |
+
nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
19 |
+
nn.ReLU(inplace=True),
|
20 |
+
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
|
21 |
+
|
22 |
+
nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
23 |
+
nn.ReLU(inplace=True),
|
24 |
+
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
|
25 |
+
|
26 |
+
nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
27 |
+
nn.ReLU(inplace=True),
|
28 |
+
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)),
|
29 |
+
|
30 |
+
nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
31 |
+
nn.ReLU(inplace=True),
|
32 |
+
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0)
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
return self.features(x)
|
37 |
+
|
38 |
+
class Decoder(nn.Module):
|
39 |
+
|
40 |
+
def __init__(self):
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.features = nn.Sequential(
|
44 |
+
nn.ConvTranspose2d(256, 128, kernel_size=(2, 2), stride=(2, 2)),
|
45 |
+
nn.ReLU(inplace=True),
|
46 |
+
|
47 |
+
nn.ConvTranspose2d(128, 64, kernel_size=(2, 2), stride=(2, 2)),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
|
50 |
+
nn.ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2)),
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
|
53 |
+
nn.ConvTranspose2d(32, 16, kernel_size=(2, 2), stride=(2, 2)),
|
54 |
+
nn.ReLU(inplace=True),
|
55 |
+
|
56 |
+
nn.ConvTranspose2d(16, 3, kernel_size=(2, 2), stride=(2, 2)),
|
57 |
+
nn.ReLU(inplace=True)
|
58 |
+
)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
return self.features(x)
|
62 |
+
|
63 |
+
class GenConViTED(nn.Module):
|
64 |
+
def __init__(self, config, pretrained=True):
|
65 |
+
super(GenConViTED, self).__init__()
|
66 |
+
self.encoder = Encoder()
|
67 |
+
self.decoder = Decoder()
|
68 |
+
self.backbone = timm.create_model(config['model']['backbone'], pretrained=pretrained)
|
69 |
+
self.embedder = timm.create_model(config['model']['embedder'], pretrained=pretrained)
|
70 |
+
self.backbone.patch_embed = HybridEmbed(self.embedder, img_size=config['img_size'], embed_dim=768)
|
71 |
+
|
72 |
+
self.num_features = self.backbone.head.fc.out_features * 2
|
73 |
+
self.fc = nn.Linear(self.num_features, self.num_features//4)
|
74 |
+
self.fc2 = nn.Linear(self.num_features//4, 2)
|
75 |
+
self.relu = nn.GELU()
|
76 |
+
|
77 |
+
def forward(self, images):
|
78 |
+
|
79 |
+
encimg = self.encoder(images)
|
80 |
+
decimg = self.decoder(encimg)
|
81 |
+
|
82 |
+
x1 = self.backbone(decimg)
|
83 |
+
x2 = self.backbone(images)
|
84 |
+
|
85 |
+
x = torch.cat((x1,x2), dim=1)
|
86 |
+
|
87 |
+
x = self.fc2(self.relu(self.fc(self.relu(x))))
|
88 |
+
|
89 |
+
return x
|
model/genconvit_vae.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms
|
4 |
+
from timm import create_model
|
5 |
+
from model.config import load_config
|
6 |
+
from .model_embedder import HybridEmbed
|
7 |
+
|
8 |
+
config = load_config()
|
9 |
+
|
10 |
+
class Encoder(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self, latent_dims=4):
|
13 |
+
super(Encoder, self).__init__()
|
14 |
+
|
15 |
+
self.features = nn.Sequential(
|
16 |
+
nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1),
|
17 |
+
nn.BatchNorm2d(num_features=16),
|
18 |
+
nn.LeakyReLU(),
|
19 |
+
|
20 |
+
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
|
21 |
+
nn.BatchNorm2d(num_features=32),
|
22 |
+
nn.LeakyReLU(),
|
23 |
+
|
24 |
+
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
|
25 |
+
nn.BatchNorm2d(num_features=64),
|
26 |
+
nn.LeakyReLU(),
|
27 |
+
|
28 |
+
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
|
29 |
+
nn.BatchNorm2d(num_features=128),
|
30 |
+
nn.LeakyReLU()
|
31 |
+
)
|
32 |
+
|
33 |
+
self.latent_dims = latent_dims
|
34 |
+
self.fc1 = nn.Linear(128*14*14, 256)
|
35 |
+
self.fc2 = nn.Linear(256, 128)
|
36 |
+
self.mu = nn.Linear(128*14*14, self.latent_dims)
|
37 |
+
self.var = nn.Linear(128*14*14, self.latent_dims)
|
38 |
+
|
39 |
+
self.kl = 0
|
40 |
+
self.kl_weight = 0.5#0.00025
|
41 |
+
self.relu = nn.LeakyReLU()
|
42 |
+
|
43 |
+
def reparameterize(self, x):
|
44 |
+
# https://github.com/AntixK/PyTorch-VAE/blob/a6896b944c918dd7030e7d795a8c13e5c6345ec7/models/vanilla_vae.py
|
45 |
+
std = torch.exp(0.5*self.mu(x))
|
46 |
+
eps = torch.randn_like(std)
|
47 |
+
z = eps * std + self.mu(x)
|
48 |
+
|
49 |
+
return z, std
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = self.features(x)
|
53 |
+
x = torch.flatten(x, start_dim=1)
|
54 |
+
|
55 |
+
mu = self.mu(x)
|
56 |
+
var = self.var(x)
|
57 |
+
z,_ = self.reparameterize(x)
|
58 |
+
self.kl = self.kl_weight*torch.mean(-0.5*torch.sum(1+var - mu**2 - var.exp(), dim=1), dim=0)
|
59 |
+
|
60 |
+
return z
|
61 |
+
|
62 |
+
class Decoder(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, latent_dims=4):
|
65 |
+
super(Decoder, self).__init__()
|
66 |
+
|
67 |
+
self.features = nn.Sequential(
|
68 |
+
nn.ConvTranspose2d(256, 64, kernel_size=2, stride=2),
|
69 |
+
nn.LeakyReLU(),
|
70 |
+
|
71 |
+
nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2),
|
72 |
+
nn.LeakyReLU(),
|
73 |
+
|
74 |
+
nn.ConvTranspose2d(32, 16, kernel_size=2, stride=2),
|
75 |
+
nn.LeakyReLU(),
|
76 |
+
|
77 |
+
nn.ConvTranspose2d(16, 3, kernel_size=2, stride=2),
|
78 |
+
nn.LeakyReLU()
|
79 |
+
)
|
80 |
+
|
81 |
+
self.latent_dims = latent_dims
|
82 |
+
|
83 |
+
self.unflatten = nn.Unflatten(dim=1, unflattened_size=(256, 7, 7))
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
x = self.unflatten(x)
|
87 |
+
x = self.features(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
class GenConViTVAE(nn.Module):
|
91 |
+
def __init__(self, config, pretrained=True):
|
92 |
+
super(GenConViTVAE, self).__init__()
|
93 |
+
self.latent_dims = config['model']['latent_dims']
|
94 |
+
self.encoder = Encoder(self.latent_dims)
|
95 |
+
self.decoder = Decoder(self.latent_dims)
|
96 |
+
self.embedder = create_model(config['model']['embedder'], pretrained=True)
|
97 |
+
self.convnext_backbone = create_model(config['model']['backbone'], pretrained=True, num_classes=1000, drop_path_rate=0, head_init_scale=1.0)
|
98 |
+
self.convnext_backbone.patch_embed = HybridEmbed(self.embedder, img_size=config['img_size'], embed_dim=768)
|
99 |
+
self.num_feature = self.convnext_backbone.head.fc.out_features * 2
|
100 |
+
|
101 |
+
self.fc = nn.Linear(self.num_feature, self.num_feature//4)
|
102 |
+
self.fc3 = nn.Linear(self.num_feature//2, self.num_feature//4)
|
103 |
+
self.fc2 = nn.Linear(self.num_feature//4, config['num_classes'])
|
104 |
+
self.relu = nn.ReLU()
|
105 |
+
self.resize = transforms.Resize((224,224), antialias=True)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
z = self.encoder(x)
|
109 |
+
x_hat = self.decoder(z)
|
110 |
+
|
111 |
+
x1 = self.convnext_backbone(x)
|
112 |
+
x2 = self.convnext_backbone(x_hat)
|
113 |
+
x = torch.cat((x1,x2), dim=1)
|
114 |
+
x = self.fc2(self.relu(self.fc(self.relu(x))))
|
115 |
+
|
116 |
+
return x, self.resize(x_hat)
|
model/model_embedder.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class HybridEmbed(nn.Module):
|
5 |
+
""" CNN Feature Map Embedding
|
6 |
+
Extract feature map from CNN, flatten, project to embedding dim.
|
7 |
+
"""
|
8 |
+
def __init__(self, backbone, img_size=224, patch_size=1, feature_size=None, in_chans=3, embed_dim=768):
|
9 |
+
super().__init__()
|
10 |
+
assert isinstance(backbone, nn.Module)
|
11 |
+
img_size = (img_size, img_size)
|
12 |
+
patch_size = (patch_size, patch_size)
|
13 |
+
self.img_size = img_size
|
14 |
+
self.patch_size = patch_size
|
15 |
+
self.backbone = backbone
|
16 |
+
if feature_size is None:
|
17 |
+
with torch.no_grad():
|
18 |
+
# NOTE Most reliable way of determining output dims is to run forward pass
|
19 |
+
training = backbone.training
|
20 |
+
if training:
|
21 |
+
backbone.eval()
|
22 |
+
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
|
23 |
+
if isinstance(o, (list, tuple)):
|
24 |
+
o = o[-1] # last feature if backbone outputs list/tuple of features
|
25 |
+
feature_size = o.shape[-2:]
|
26 |
+
feature_dim = o.shape[1]
|
27 |
+
backbone.train(training)
|
28 |
+
else:
|
29 |
+
feature_size = (feature_size, feature_size)
|
30 |
+
if hasattr(self.backbone, 'feature_info'):
|
31 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
32 |
+
else:
|
33 |
+
feature_dim = self.backbone.num_features
|
34 |
+
assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0
|
35 |
+
self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])
|
36 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
37 |
+
self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.backbone(x)
|
41 |
+
if isinstance(x, (list, tuple)):
|
42 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
43 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
44 |
+
return x
|
model/pred_func.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from tqdm import tqdm
|
7 |
+
from dataset.loader import normalize_data
|
8 |
+
from .config import load_config
|
9 |
+
from .genconvit import GenConViT
|
10 |
+
from decord import VideoReader, cpu
|
11 |
+
from .face_detection import detect_faces # Import our new function
|
12 |
+
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
|
16 |
+
def load_genconvit(config, net, ed_weight, vae_weight, fp16):
|
17 |
+
model = GenConViT(
|
18 |
+
config,
|
19 |
+
ed=ed_weight,
|
20 |
+
vae=vae_weight,
|
21 |
+
net=net,
|
22 |
+
fp16=fp16
|
23 |
+
)
|
24 |
+
|
25 |
+
model.to(device)
|
26 |
+
model.eval()
|
27 |
+
if fp16:
|
28 |
+
model.half()
|
29 |
+
|
30 |
+
return model
|
31 |
+
|
32 |
+
|
33 |
+
# Replace face_rec with our new function
|
34 |
+
def face_rec(frames, p=None, klass=None):
|
35 |
+
return detect_faces(frames)
|
36 |
+
|
37 |
+
|
38 |
+
def preprocess_frame(frame):
|
39 |
+
df_tensor = torch.tensor(frame, device=device).float()
|
40 |
+
df_tensor = df_tensor.permute((0, 3, 1, 2))
|
41 |
+
|
42 |
+
for i in range(len(df_tensor)):
|
43 |
+
df_tensor[i] = normalize_data()["vid"](df_tensor[i] / 255.0)
|
44 |
+
|
45 |
+
return df_tensor
|
46 |
+
|
47 |
+
|
48 |
+
def pred_vid(df, model):
|
49 |
+
with torch.no_grad():
|
50 |
+
return max_prediction_value(torch.sigmoid(model(df).squeeze()))
|
51 |
+
|
52 |
+
|
53 |
+
def max_prediction_value(y_pred):
|
54 |
+
# Finds the index and value of the maximum prediction value.
|
55 |
+
mean_val = torch.mean(y_pred, dim=0)
|
56 |
+
return (
|
57 |
+
torch.argmax(mean_val).item(),
|
58 |
+
mean_val[0].item()
|
59 |
+
if mean_val[0] > mean_val[1]
|
60 |
+
else abs(1 - mean_val[1]).item(),
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
def real_or_fake(prediction):
|
65 |
+
return {0: "REAL", 1: "FAKE"}[prediction ^ 1]
|
66 |
+
|
67 |
+
|
68 |
+
def extract_frames(video_file, frames_nums=15):
|
69 |
+
vr = VideoReader(video_file, ctx=cpu(0))
|
70 |
+
step_size = max(1, len(vr) // frames_nums) # Calculate the step size between frames
|
71 |
+
return vr.get_batch(
|
72 |
+
list(range(0, len(vr), step_size))[:frames_nums]
|
73 |
+
).asnumpy() # seek frames with step_size
|
74 |
+
|
75 |
+
|
76 |
+
def df_face(vid, num_frames, net):
|
77 |
+
img = extract_frames(vid, num_frames)
|
78 |
+
face, count = face_rec(img)
|
79 |
+
return preprocess_frame(face) if count > 0 else []
|
80 |
+
|
81 |
+
|
82 |
+
def is_video(vid):
|
83 |
+
print('IS FILE', os.path.isfile(vid))
|
84 |
+
return os.path.isfile(vid) and vid.endswith(
|
85 |
+
tuple([".avi", ".mp4", ".mpg", ".mpeg", ".mov"])
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def set_result():
|
90 |
+
return {
|
91 |
+
"video": {
|
92 |
+
"name": [],
|
93 |
+
"pred": [],
|
94 |
+
"klass": [],
|
95 |
+
"pred_label": [],
|
96 |
+
"correct_label": [],
|
97 |
+
}
|
98 |
+
}
|
99 |
+
|
100 |
+
|
101 |
+
def store_result(
|
102 |
+
result, filename, y, y_val, klass, correct_label=None, compression=None
|
103 |
+
):
|
104 |
+
result["video"]["name"].append(filename)
|
105 |
+
result["video"]["pred"].append(y_val)
|
106 |
+
result["video"]["klass"].append(klass.lower())
|
107 |
+
result["video"]["pred_label"].append(real_or_fake(y))
|
108 |
+
|
109 |
+
if correct_label is not None:
|
110 |
+
result["video"]["correct_label"].append(correct_label)
|
111 |
+
|
112 |
+
if compression is not None:
|
113 |
+
result["video"]["compression"].append(compression)
|
114 |
+
|
115 |
+
return result
|
packages.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
build-essential
|
2 |
+
cmake
|
3 |
+
libopenblas-dev
|
4 |
+
liblapack-dev
|
5 |
+
libx11-dev
|
6 |
+
libgtk-3-dev
|
pipeline_architecture.png
ADDED
![]() |
prediction.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
from time import perf_counter
|
5 |
+
from datetime import datetime
|
6 |
+
from model.pred_func import *
|
7 |
+
from model.config import load_config
|
8 |
+
|
9 |
+
config = load_config()
|
10 |
+
print('CONFIG')
|
11 |
+
print(config)
|
12 |
+
def vids(
|
13 |
+
ed_weight, vae_weight, root_dir="sample_prediction_data", dataset=None, num_frames=15, net=None, fp16=False
|
14 |
+
):
|
15 |
+
result = set_result()
|
16 |
+
r = 0
|
17 |
+
f = 0
|
18 |
+
count = 0
|
19 |
+
|
20 |
+
model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
|
21 |
+
|
22 |
+
for filename in os.listdir(root_dir):
|
23 |
+
curr_vid = os.path.join(root_dir, filename)
|
24 |
+
|
25 |
+
try:
|
26 |
+
if is_video(curr_vid):
|
27 |
+
result, accuracy, count, pred = predict(
|
28 |
+
curr_vid,
|
29 |
+
model,
|
30 |
+
fp16,
|
31 |
+
result,
|
32 |
+
num_frames,
|
33 |
+
net,
|
34 |
+
"uncategorized",
|
35 |
+
count,
|
36 |
+
)
|
37 |
+
f, r = (f + 1, r) if "FAKE" == real_or_fake(pred[0]) else (f, r + 1)
|
38 |
+
print(
|
39 |
+
f"Prediction: {pred[1]} {real_or_fake(pred[0])} \t\tFake: {f} Real: {r}"
|
40 |
+
)
|
41 |
+
else:
|
42 |
+
print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
|
43 |
+
|
44 |
+
except Exception as e:
|
45 |
+
print(f"An error occurred: {str(e)}")
|
46 |
+
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
def faceforensics(
|
51 |
+
ed_weight, vae_weight, root_dir="FaceForensics\\data", dataset=None, num_frames=15, net=None, fp16=False
|
52 |
+
):
|
53 |
+
vid_type = ["original_sequences", "manipulated_sequences"]
|
54 |
+
result = set_result()
|
55 |
+
result["video"]["compression"] = []
|
56 |
+
ffdirs = [
|
57 |
+
"DeepFakeDetection",
|
58 |
+
"Deepfakes",
|
59 |
+
"Face2Face",
|
60 |
+
"FaceSwap",
|
61 |
+
"NeuralTextures",
|
62 |
+
]
|
63 |
+
|
64 |
+
# load files not used in the training set, the files are appended with compression type, _c23 or _c40
|
65 |
+
with open(os.path.join("json_file", "ff_file_list.json")) as j_file:
|
66 |
+
ff_file = list(json.load(j_file))
|
67 |
+
|
68 |
+
count = 0
|
69 |
+
accuracy = 0
|
70 |
+
model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
|
71 |
+
|
72 |
+
for v_t in vid_type:
|
73 |
+
for dirpath, dirnames, filenames in os.walk(os.path.join(root_dir, v_t)):
|
74 |
+
klass = next(
|
75 |
+
filter(lambda x: x in dirpath.split(os.path.sep), ffdirs),
|
76 |
+
"original",
|
77 |
+
)
|
78 |
+
label = "REAL" if klass == "original" else "FAKE"
|
79 |
+
for filename in filenames:
|
80 |
+
try:
|
81 |
+
if filename in ff_file:
|
82 |
+
curr_vid = os.path.join(dirpath, filename)
|
83 |
+
compression = "c23" if "c23" in curr_vid else "c40"
|
84 |
+
if is_video(curr_vid):
|
85 |
+
result, accuracy, count, _ = predict(
|
86 |
+
curr_vid,
|
87 |
+
model,
|
88 |
+
fp16,
|
89 |
+
result,
|
90 |
+
num_frames,
|
91 |
+
net,
|
92 |
+
klass,
|
93 |
+
count,
|
94 |
+
accuracy,
|
95 |
+
label,
|
96 |
+
compression,
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
print(f"An error occurred: {str(e)}")
|
103 |
+
|
104 |
+
return result
|
105 |
+
|
106 |
+
|
107 |
+
def timit(ed_weight, vae_weight, root_dir="DeepfakeTIMIT", dataset=None, num_frames=15, net=None, fp16=False):
|
108 |
+
keywords = ["higher_quality", "lower_quality"]
|
109 |
+
result = set_result()
|
110 |
+
model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
|
111 |
+
count = 0
|
112 |
+
accuracy = 0
|
113 |
+
i = 0
|
114 |
+
for keyword in keywords:
|
115 |
+
keyword_folder_path = os.path.join(root_dir, keyword)
|
116 |
+
for subfolder_name in os.listdir(keyword_folder_path):
|
117 |
+
subfolder_path = os.path.join(keyword_folder_path, subfolder_name)
|
118 |
+
if os.path.isdir(subfolder_path):
|
119 |
+
# Loop through the AVI files in the subfolder
|
120 |
+
for filename in os.listdir(subfolder_path):
|
121 |
+
if filename.endswith(".avi"):
|
122 |
+
curr_vid = os.path.join(subfolder_path, filename)
|
123 |
+
try:
|
124 |
+
if is_video(curr_vid):
|
125 |
+
result, accuracy, count, _ = predict(
|
126 |
+
curr_vid,
|
127 |
+
model,
|
128 |
+
fp16,
|
129 |
+
result,
|
130 |
+
num_frames,
|
131 |
+
net,
|
132 |
+
"DeepfakeTIMIT",
|
133 |
+
count,
|
134 |
+
accuracy,
|
135 |
+
"FAKE",
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
print(f"An error occurred: {str(e)}")
|
142 |
+
|
143 |
+
return result
|
144 |
+
|
145 |
+
|
146 |
+
def dfdc(
|
147 |
+
ed_weight,
|
148 |
+
vae_weight,
|
149 |
+
root_dir="deepfake-detection-challenge\\train_sample_videos",
|
150 |
+
dataset=None,
|
151 |
+
num_frames=15,
|
152 |
+
net=None,
|
153 |
+
fp16=False,
|
154 |
+
):
|
155 |
+
result = set_result()
|
156 |
+
if os.path.isfile(os.path.join("json_file", "dfdc_files.json")):
|
157 |
+
with open(os.path.join("json_file", "dfdc_files.json")) as data_file:
|
158 |
+
dfdc_data = json.load(data_file)
|
159 |
+
|
160 |
+
if os.path.isfile(os.path.join(root_dir, "metadata.json")):
|
161 |
+
with open(os.path.join(root_dir, "metadata.json")) as data_file:
|
162 |
+
dfdc_meta = json.load(data_file)
|
163 |
+
model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
|
164 |
+
count = 0
|
165 |
+
accuracy = 0
|
166 |
+
for dfdc in dfdc_data:
|
167 |
+
dfdc_file = os.path.join(root_dir, dfdc)
|
168 |
+
|
169 |
+
try:
|
170 |
+
if is_video(dfdc_file):
|
171 |
+
result, accuracy, count, _ = predict(
|
172 |
+
dfdc_file,
|
173 |
+
model,
|
174 |
+
fp16,
|
175 |
+
result,
|
176 |
+
num_frames,
|
177 |
+
net,
|
178 |
+
"dfdc",
|
179 |
+
count,
|
180 |
+
accuracy,
|
181 |
+
dfdc_meta[dfdc]["label"],
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
print(f"Invalid video file: {dfdc_file}. Please provide a valid video file.")
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
print(f"An error occurred: {str(e)}")
|
188 |
+
|
189 |
+
return result
|
190 |
+
|
191 |
+
|
192 |
+
def celeb(ed_weight, vae_weight, root_dir="Celeb-DF-v2", dataset=None, num_frames=15, net=None, fp16=False):
|
193 |
+
with open(os.path.join("json_file", "celeb_test.json"), "r") as f:
|
194 |
+
cfl = json.load(f)
|
195 |
+
result = set_result()
|
196 |
+
ky = ["Celeb-real", "Celeb-synthesis"]
|
197 |
+
count = 0
|
198 |
+
accuracy = 0
|
199 |
+
model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
|
200 |
+
|
201 |
+
for ck in cfl:
|
202 |
+
ck_ = ck.split("/")
|
203 |
+
klass = ck_[0]
|
204 |
+
filename = ck_[1]
|
205 |
+
correct_label = "FAKE" if klass == "Celeb-synthesis" else "REAL"
|
206 |
+
vid = os.path.join(root_dir, ck)
|
207 |
+
|
208 |
+
try:
|
209 |
+
if is_video(vid):
|
210 |
+
result, accuracy, count, _ = predict(
|
211 |
+
vid,
|
212 |
+
model,
|
213 |
+
fp16,
|
214 |
+
result,
|
215 |
+
num_frames,
|
216 |
+
net,
|
217 |
+
klass,
|
218 |
+
count,
|
219 |
+
accuracy,
|
220 |
+
correct_label,
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
print(f"Invalid video file: {vid}. Please provide a valid video file.")
|
224 |
+
|
225 |
+
except Exception as e:
|
226 |
+
print(f"An error occurred x: {str(e)}")
|
227 |
+
|
228 |
+
return result
|
229 |
+
|
230 |
+
|
231 |
+
def predict(
|
232 |
+
vid,
|
233 |
+
model,
|
234 |
+
fp16,
|
235 |
+
result,
|
236 |
+
num_frames,
|
237 |
+
net,
|
238 |
+
klass,
|
239 |
+
count=0,
|
240 |
+
accuracy=-1,
|
241 |
+
correct_label="unknown",
|
242 |
+
compression=None,
|
243 |
+
):
|
244 |
+
count += 1
|
245 |
+
print(f"\n\n{str(count)} Loading... {vid}")
|
246 |
+
|
247 |
+
df = df_face(vid, num_frames, net) # extract face from the frames
|
248 |
+
if fp16:
|
249 |
+
df.half()
|
250 |
+
y, y_val = (
|
251 |
+
pred_vid(df, model)
|
252 |
+
if len(df) >= 1
|
253 |
+
else (torch.tensor(0).item(), torch.tensor(0.5).item())
|
254 |
+
)
|
255 |
+
result = store_result(
|
256 |
+
result, os.path.basename(vid), y, y_val, klass, correct_label, compression
|
257 |
+
)
|
258 |
+
|
259 |
+
if accuracy > -1:
|
260 |
+
if correct_label == real_or_fake(y):
|
261 |
+
accuracy += 1
|
262 |
+
print(
|
263 |
+
f"\nPrediction: {y_val} {real_or_fake(y)} \t\t {accuracy}/{count} {accuracy/count}"
|
264 |
+
)
|
265 |
+
|
266 |
+
return result, accuracy, count, [y, y_val]
|
267 |
+
|
268 |
+
|
269 |
+
def gen_parser():
|
270 |
+
parser = argparse.ArgumentParser("GenConViT prediction")
|
271 |
+
parser.add_argument("--p", type=str, help="video or image path")
|
272 |
+
parser.add_argument(
|
273 |
+
"--f", type=int, help="number of frames to process for prediction"
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
"--d", type=str, help="dataset type, dfdc, faceforensics, timit, celeb"
|
277 |
+
)
|
278 |
+
parser.add_argument(
|
279 |
+
"--s", help="model size type: tiny, large.",
|
280 |
+
)
|
281 |
+
parser.add_argument(
|
282 |
+
"--e", nargs='?', const='genconvit_ed_inference', default='genconvit_ed_inference', help="weight for ed.",
|
283 |
+
)
|
284 |
+
parser.add_argument(
|
285 |
+
"--v", '--value', nargs='?', const='genconvit_vae_inference', default='genconvit_vae_inference', help="weight for vae.",
|
286 |
+
)
|
287 |
+
|
288 |
+
parser.add_argument("--fp16", type=str, help="half precision support")
|
289 |
+
|
290 |
+
args = parser.parse_args()
|
291 |
+
path = args.p
|
292 |
+
num_frames = args.f if args.f else 15
|
293 |
+
dataset = args.d if args.d else "other"
|
294 |
+
fp16 = True if args.fp16 else False
|
295 |
+
|
296 |
+
net = 'genconvit'
|
297 |
+
ed_weight = 'genconvit_ed_inference'
|
298 |
+
vae_weight = 'genconvit_vae_inference'
|
299 |
+
|
300 |
+
if args.e and args.v:
|
301 |
+
ed_weight = args.e
|
302 |
+
vae_weight = args.v
|
303 |
+
elif args.e:
|
304 |
+
net = 'ed'
|
305 |
+
ed_weight = args.e
|
306 |
+
elif args.v:
|
307 |
+
net = 'vae'
|
308 |
+
vae_weight = args.v
|
309 |
+
|
310 |
+
|
311 |
+
print(f'\nUsing {net}\n')
|
312 |
+
|
313 |
+
|
314 |
+
if args.s:
|
315 |
+
if args.s in ['tiny', 'large']:
|
316 |
+
config["model"]["backbone"] = f"convnext_{args.s}"
|
317 |
+
config["model"]["embedder"] = f"swin_{args.s}_patch4_window7_224"
|
318 |
+
config["model"]["type"] = args.s
|
319 |
+
|
320 |
+
return path, dataset, num_frames, net, fp16, ed_weight, vae_weight
|
321 |
+
|
322 |
+
|
323 |
+
def main():
|
324 |
+
start_time = perf_counter()
|
325 |
+
path, dataset, num_frames, net, fp16, ed_weight, vae_weight = gen_parser()
|
326 |
+
result = (
|
327 |
+
globals()[dataset](ed_weight, vae_weight, path, dataset, num_frames, net, fp16)
|
328 |
+
if dataset in ["dfdc", "faceforensics", "timit", "celeb"]
|
329 |
+
else vids(ed_weight, vae_weight, path, dataset, num_frames, net, fp16)
|
330 |
+
)
|
331 |
+
|
332 |
+
curr_time = datetime.now().strftime("%B_%d_%Y_%H_%M_%S")
|
333 |
+
file_path = os.path.join("result", f"prediction_{dataset}_{net}_{curr_time}.json")
|
334 |
+
|
335 |
+
with open(file_path, "w") as f:
|
336 |
+
json.dump(result, f)
|
337 |
+
end_time = perf_counter()
|
338 |
+
print("\n\n--- %s seconds ---" % (end_time - start_time))
|
339 |
+
|
340 |
+
|
341 |
+
if __name__ == "__main__":
|
342 |
+
main()
|
requirements.txt
ADDED
Binary file (5.12 kB). View file
|
|
result/data_april11_DeepfakeTIMIT.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
result/data_april14_Celeb-DF.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["id43_id41_0001.mp4", "id20_id35_0002.mp4", "id16_id6_0009.mp4", "id33_id29_0006.mp4", "id10_id13_0003.mp4", "id42_id45_0003.mp4", "id25_id28_0010.mp4", "id26_id16_0001.mp4", "id28_id25_0002.mp4", "id23_id4_0006.mp4", "id21_id16_0007.mp4", "id29_id38_0006.mp4", "id40_id44_0005.mp4", "id6_id28_0009.mp4", "id37_id32_0005.mp4", "id9_id6_0001.mp4", "id37_id29_0002.mp4", "id27_id21_0009.mp4", "id21_id6_0009.mp4", "id45_id47_0007.mp4", "id13_id10_0008.mp4", "id44_id47_0005.mp4", "id47_id44_0007.mp4", "id23_id27_0007.mp4", "id0_id3_0005.mp4", "id35_id28_0000.mp4", "id9_id26_0002.mp4", "id9_id23_0002.mp4", "id54_id56_0002.mp4", "id56_id55_0001.mp4", "id28_id17_0008.mp4", "id19_id28_0000.mp4", "id50_id57_0009.mp4", "id30_id23_0006.mp4", "id61_id60_0000.mp4", "id37_id31_0004.mp4", "id30_id35_0004.mp4", "id29_id23_0002.mp4", "id3_id9_0000.mp4", "id6_id21_0009.mp4", "id37_id26_0001.mp4", "id9_id6_0002.mp4", "id40_id39_0009.mp4", "id44_id45_0004.mp4", "id33_id29_0009.mp4", "id28_id25_0000.mp4", "id20_id16_0009.mp4", "id43_id47_0002.mp4", "id41_id43_0001.mp4", "id16_id1_0009.mp4", "id19_id24_0004.mp4", "id60_id61_0001.mp4", "id20_id0_0006.mp4", "id3_id20_0000.mp4", "id26_id9_0003.mp4", "id2_id1_0008.mp4", "id19_id23_0002.mp4", "id50_id49_0003.mp4", "id58_id53_0002.mp4", "id31_id33_0002.mp4", "id21_id17_0005.mp4", "id33_id20_0007.mp4", "id32_id30_0008.mp4", "id4_id3_0006.mp4", "id60_id61_0009.mp4", "id37_id31_0007.mp4", "id23_id16_0005.mp4", "id31_id23_0001.mp4", "id3_id1_0005.mp4", "id30_id33_0000.mp4", "id26_id28_0002.mp4", "id6_id4_0007.mp4", "id34_id38_0001.mp4", "id28_id9_0000.mp4", "id51_id54_0008.mp4", "id51_id53_0006.mp4", "id48_id41_0004.mp4", "id9_id30_0000.mp4", "id1_id21_0005.mp4", "id20_id0_0003.mp4", "id2_id23_0008.mp4", "id20_id34_0003.mp4", "id35_id29_0004.mp4", "id33_id37_0004.mp4", "id39_id46_0001.mp4", "id41_id46_0004.mp4", "id35_id20_0003.mp4", "id34_id29_0007.mp4", "id28_id35_0001.mp4", "id2_id28_0007.mp4", "id32_id31_0007.mp4", "id32_id37_0005.mp4", "id37_id35_0002.mp4", "id30_id17_0002.mp4", "id9_id23_0006.mp4", "id23_id27_0006.mp4", "id17_id1_0007.mp4", "id39_id48_0009.mp4", "id21_id1_0000.mp4", "id28_id32_0009.mp4", "id47_id45_0005.mp4", "id37_id26_0006.mp4", "id28_id3_0002.mp4", "id21_id9_0006.mp4", "id28_id23_0000.mp4", "id6_id28_0005.mp4", "id24_id21_0006.mp4", "id54_id55_0002.mp4", "id32_id21_0007.mp4", "id30_id26_0009.mp4", "id50_id53_0004.mp4", "id58_id51_0002.mp4", "id21_id37_0009.mp4", "id29_id37_0000.mp4", "id26_id28_0000.mp4", "id35_id1_0006.mp4", "id50_id54_0009.mp4", "id17_id6_0009.mp4", "id58_id55_0005.mp4", "id31_id34_0008.mp4", "id28_id16_0003.mp4", "id4_id3_0004.mp4", "id45_id40_0008.mp4", "id2_id16_0009.mp4", "id43_id45_0000.mp4", "id16_id37_0009.mp4", "id32_id35_0004.mp4", "id56_id54_0008.mp4", "id2_id37_0002.mp4", "id3_id20_0001.mp4", "id23_id2_0003.mp4", "id46_id47_0007.mp4", "id33_id23_0003.mp4", "id40_id48_0003.mp4", "id4_id3_0008.mp4", "id54_id57_0004.mp4", "id3_id2_0005.mp4", "id28_id16_0000.mp4", "id56_id57_0006.mp4", "id38_id33_0006.mp4", "id37_id38_0007.mp4", "id23_id16_0001.mp4", "id20_id37_0003.mp4", "id20_id31_0000.mp4", "id39_id48_0000.mp4", "id57_id58_0003.mp4", "id4_id20_0003.mp4", "id0_id20_0004.mp4", "id0_id20_0001.mp4", "id21_id4_0002.mp4", "id16_id1_0002.mp4", "id29_id28_0008.mp4", "id35_id38_0005.mp4", "id54_id52_0008.mp4", "id30_id2_0001.mp4", "id43_id47_0006.mp4", "id9_id16_0001.mp4", "id26_id16_0006.mp4", "id9_id37_0006.mp4", "id20_id32_0007.mp4", "id55_id52_0007.mp4", "id48_id44_0001.mp4", "id20_id16_0000.mp4", "id6_id28_0000.mp4", "id1_id26_0007.mp4", "id53_id55_0004.mp4", "id2_id1_0002.mp4", "id45_id48_0008.mp4", "id41_id45_0001.mp4", "id26_id38_0003.mp4", "id19_id25_0005.mp4", "id29_id26_0007.mp4", "id31_id21_0001.mp4", "id25_id27_0003.mp4", "id45_id42_0000.mp4", "id31_id28_0003.mp4", "id20_id24_0000.mp4", "id21_id33_0009.mp4", "id53_id52_0006.mp4", "id24_id25_0006.mp4", "id1_id2_0007.mp4", "id3_id37_0001.mp4", "id21_id25_0008.mp4", "id23_id6_0005.mp4", "id1_id37_0002.mp4", "id23_id24_0007.mp4", "id53_id49_0002.mp4", "id52_id56_0003.mp4", "id28_id3_0004.mp4", "id38_id34_0006.mp4", "id7_id12_0004.mp4", "id20_id30_0005.mp4", "id55_id51_0007.mp4", "id49_id56_0007.mp4", "id20_id24_0009.mp4", "id21_id30_0007.mp4", "id46_id48_0009.mp4", "id6_id37_0004.mp4", "id54_id49_0001.mp4", "id49_id52_0005.mp4", "id19_id20_0001.mp4", "id33_id38_0005.mp4", "id52_id53_0002.mp4", "id56_id52_0003.mp4", "id58_id55_0002.mp4", "id1_id9_0004.mp4", "id31_id29_0009.mp4", "id30_id1_0005.mp4", "id23_id27_0001.mp4", "id45_id46_0009.mp4", "id1_id23_0004.mp4", "id49_id56_0001.mp4", "id30_id35_0005.mp4", "id55_id50_0004.mp4", "id21_id24_0009.mp4", "id37_id2_0004.mp4", "id9_id31_0001.mp4", "id31_id17_0005.mp4", "id6_id20_0004.mp4", "id21_id20_0007.mp4", "id54_id56_0007.mp4", "id6_id0_0009.mp4", "id25_id28_0000.mp4", "id54_id53_0009.mp4", "id1_id26_0004.mp4", "id49_id55_0001.mp4", "id45_id39_0009.mp4", "id47_id40_0003.mp4", "id23_id4_0003.mp4", "id22_id25_0006.mp4", "id48_id44_0000.mp4", "id46_id45_0003.mp4", "id16_id23_0012.mp4", "id33_id28_0009.mp4", "id28_id26_0001.mp4", "id3_id0_0001.mp4", "id46_id40_0009.mp4", "id6_id1_0007.mp4", "id6_id3_0000.mp4", "id29_id26_0009.mp4", "id49_id54_0005.mp4", "id48_id40_0006.mp4", "id20_id9_0008.mp4", "id60_id59_0002.mp4", "id6_id16_0000.mp4", "id41_id48_0008.mp4", "id0_id23_0000.mp4", "id17_id21_0006.mp4", "id4_id26_0001.mp4", "id45_id41_0000.mp4", "id38_id35_0000.mp4", "id53_id57_0005.mp4", "id55_id51_0009.mp4", "id48_id45_0006.mp4", "id29_id20_0005.mp4", "id48_id44_0003.mp4", "id53_id55_0002.mp4", "id30_id38_0007.mp4", "id58_id57_0001.mp4", "id28_id25_0008.mp4", "id32_id33_0007.mp4", "id30_id28_0000.mp4", "id20_id4_0006.mp4", "id26_id23_0004.mp4", "id52_id49_0004.mp4", "id23_id24_0004.mp4", "id2_id16_0004.mp4", "id30_id9_0008.mp4", "id33_id31_0009.mp4", "id52_id53_0001.mp4", "id22_id21_0002.mp4", "id37_id28_0003.mp4", "id47_id41_0009.mp4", "id25_id23_0010.mp4", "id0_id26_0000.mp4", "id29_id21_0004.mp4", "id30_id17_0009.mp4", "id53_id50_0000.mp4", "id28_id37_0002.mp4", "id10_id13_0002.mp4", "id51_id54_0004.mp4", "id20_id19_0002.mp4", "id35_id32_0002.mp4", "id33_id23_0008.mp4", "id30_id2_0003.mp4", "id53_id56_0003.mp4", "id46_id42_0000.mp4", "id23_id34_0005.mp4", "id31_id28_0001.mp4", "id6_id31_0008.mp4", "id57_id51_0007.mp4", "id3_id30_0008.mp4", "id21_id38_0008.mp4", "id28_id26_0008.mp4", "id0_id9_0001.mp4", "id28_id2_0008.mp4", "id34_id28_0003.mp4", "id32_id26_0008.mp4", "id35_id29_0002.mp4", "id28_id20_0004.mp4", "id32_id30_0003.mp4", "id26_id31_0001.mp4", "id17_id0_0005.mp4", "id48_id41_0007.mp4", "id17_id23_0004.mp4", "id59_id60_0001.mp4", "id21_id26_0005.mp4", "id27_id26_0001.mp4", "id56_id49_0009.mp4", "id21_id4_0006.mp4", "id38_id33_0009.mp4", "id35_id4_0008.mp4", "id29_id28_0007.mp4", "id42_id39_0002.mp4", "id23_id29_0003.mp4", "id30_id32_0009.mp4", "id21_id9_0000.mp4", "id27_id25_0000.mp4", "id25_id24_0008.mp4", "id3_id21_0000.mp4", "id28_id32_0004.mp4", "id57_id54_0000.mp4", "id23_id0_0002.mp4", "id38_id23_0000.mp4", "id31_id9_0003.mp4", "id2_id30_0008.mp4", "id28_id35_0002.mp4", "id25_id27_0008.mp4", "id29_id38_0008.mp4", "id35_id33_0001.mp4", "id2_id35_0009.mp4", "id53_id49_0006.mp4", "id54_id57_0008.mp4", "id23_id35_0006.mp4", "id41_id46_0006.mp4", "id51_id57_0005.mp4", "id42_id46_0003.mp4", "id49_id50_0008.mp4", "id30_id28_0008.mp4", "id17_id2_0006.mp4", "id9_id31_0003.mp4", "id33_id34_0002.mp4", "id48_id41_0009.mp4", "id47_id42_0003.mp4", "id48_id46_0005.mp4", "id44_id45_0005.mp4", "id31_id34_0001.mp4", "id39_id48_0006.mp4", "id2_id26_0003.mp4", "id43_id48_0006.mp4", "id7_id13_0007.mp4", "id28_id20_0009.mp4", "id20_id35_0007.mp4", "id4_id9_0000.mp4", "id50_id55_0005.mp4", "id6_id21_0002.mp4", "id1_id31_0006.mp4", "id1_id2_0004.mp4", "id16_id23_0011.mp4", "id37_id33_0008.mp4", "id21_id1_0006.mp4", "id44_id45_0002.mp4", "id48_id40_0001.mp4", "id21_id16_0009.mp4", "id29_id38_0000.mp4", "id3_id0_0002.mp4", "id16_id30_0001.mp4", "id26_id31_0009.mp4", "id28_id26_0004.mp4", "id56_id52_0002.mp4", "id17_id23_0000.mp4", "id23_id35_0003.mp4", "id2_id23_0005.mp4", "id4_id1_0004.mp4", "id40_id44_0002.mp4", "id38_id33_0004.mp4", "id55_id56_0004.mp4", "id23_id1_0000.mp4", "id38_id30_0001.mp4", "id20_id22_0002.mp4", "id29_id28_0009.mp4", "id26_id22_0000.mp4", "id24_id19_0003.mp4", "id9_id28_0001.mp4", "id13_id7_0008.mp4", "id17_id1_0000.mp4", "id39_id43_0003.mp4", "id19_id27_0006.mp4", "id17_id20_0007.mp4", "id6_id26_0004.mp4", "id1_id31_0003.mp4", "id19_id22_0005.mp4", "id9_id3_0008.mp4", "id29_id21_0000.mp4", "id4_id23_0003.mp4", "id48_id46_0009.mp4", "id26_id24_0003.mp4", "id31_id28_0007.mp4", "id16_id21_0012.mp4", "id23_id37_0001.mp4", "id28_id0_0000.mp4", "id16_id9_0009.mp4", "id26_id35_0000.mp4", "id29_id26_0005.mp4", "id38_id32_0007.mp4", "id37_id2_0001.mp4", "id2_id35_0007.mp4", "id38_id28_0009.mp4", "id2_id26_0006.mp4", "id28_id0_0009.mp4", "id31_id26_0002.mp4", "id56_id52_0008.mp4", "id23_id31_0003.mp4", "id51_id53_0005.mp4", "id38_id21_0001.mp4", "id26_id34_0001.mp4", "id16_id2_0010.mp4", "id49_id58_0004.mp4", "id39_id48_0007.mp4", "id23_id25_0003.mp4", "id29_id32_0001.mp4", "id11_id7_0010.mp4", "id37_id34_0002.mp4", "id9_id35_0002.mp4", "id20_id26_0002.mp4", "id45_id40_0000.mp4", "id22_id25_0001.mp4", "id27_id21_0006.mp4", "id8_id2_0002.mp4", "id23_id20_0007.mp4", "id30_id29_0003.mp4", "id17_id3_0002.mp4", "id23_id6_0006.mp4", "id0_id23_0004.mp4", "id41_id48_0005.mp4", "id2_id9_0009.mp4", "id17_id30_0007.mp4", "id16_id26_0000.mp4", "id52_id49_0007.mp4", "id6_id1_0005.mp4", "id39_id42_0005.mp4", "id28_id6_0001.mp4", "id26_id37_0009.mp4", "id6_id21_0004.mp4", "id22_id20_0002.mp4", "id25_id21_0002.mp4", "id16_id0_0005.mp4", "id53_id54_0005.mp4", "id26_id3_0001.mp4", "id48_id42_0002.mp4", "id35_id1_0002.mp4", "id37_id32_0002.mp4", "id6_id9_0000.mp4", "id2_id23_0000.mp4", "id25_id26_0008.mp4", "id49_id52_0000.mp4", "id9_id17_0008.mp4", "id11_id7_0003.mp4", "id35_id34_0009.mp4", "id4_id0_0000.mp4", "id22_id28_0004.mp4", "id27_id22_0004.mp4", "id23_id29_0004.mp4", "id29_id34_0008.mp4", "id23_id3_0002.mp4", "id56_id58_0002.mp4", "id43_id41_0008.mp4", "id20_id19_0008.mp4", "id5_id61_0008.mp4", "id21_id31_0006.mp4", "id25_id19_0003.mp4", "id3_id9_0004.mp4", "id26_id25_0004.mp4", "id39_id40_0005.mp4", "id55_id51_0004.mp4", "id43_id40_0008.mp4", "id1_id31_0009.mp4", "id31_id28_0002.mp4", "id54_id51_0008.mp4", "id30_id32_0004.mp4", "id20_id27_0002.mp4", "id31_id17_0009.mp4", "id1_id3_0006.mp4", "id2_id30_0001.mp4", "id3_id1_0006.mp4", "id25_id23_0003.mp4", "id4_id3_0003.mp4", "id37_id6_0007.mp4", "id26_id33_0001.mp4", "id47_id41_0004.mp4", "id35_id28_0003.mp4", "id23_id29_0001.mp4", "id6_id1_0001.mp4", "id28_id2_0001.mp4", "id49_id57_0006.mp4", "id24_id19_0000.mp4", "id45_id40_0006.mp4", "id30_id3_0008.mp4", "id50_id56_0008.mp4", "id3_id4_0008.mp4", "id31_id28_0009.mp4", "id56_id49_0006.mp4", "id7_id12_0002.mp4", "id37_id31_0009.mp4", "id21_id26_0009.mp4", "id35_id1_0008.mp4", "id21_id31_0005.mp4", "id47_id43_0009.mp4", "id46_id42_0004.mp4", "id22_id24_0004.mp4", "id39_id45_0004.mp4", "id28_id29_0007.mp4", "id25_id27_0004.mp4", "id19_id21_0007.mp4", "id3_id20_0008.mp4", "id48_id42_0000.mp4", "id49_id54_0003.mp4", "id24_id19_0004.mp4", "id45_id40_0002.mp4", "id39_id44_0005.mp4", "id39_id47_0009.mp4", "id10_id11_0003.mp4", "id23_id24_0006.mp4", "id28_id34_0000.mp4", "id31_id1_0007.mp4", "id54_id50_0002.mp4", "id23_id20_0005.mp4", "id6_id23_0008.mp4", "id55_id51_0008.mp4", "id35_id6_0001.mp4", "id51_id58_0008.mp4", "id16_id30_0003.mp4", "id23_id20_0009.mp4", "id3_id26_0004.mp4", "id43_id46_0005.mp4", "id54_id49_0009.mp4", "id46_id44_0000.mp4", "id34_id26_0008.mp4", "id35_id33_0005.mp4", "id20_id3_0009.mp4", "id1_id0_0004.mp4", "id4_id23_0009.mp4", "id53_id58_0008.mp4", "id4_id1_0007.mp4", "id52_id50_0006.mp4", "id29_id30_0000.mp4", "id23_id9_0006.mp4", "id21_id23_0005.mp4", "id37_id6_0001.mp4", "id17_id28_0005.mp4", "id53_id51_0007.mp4", "id31_id20_0002.mp4", "id16_id3_0011.mp4", "id35_id29_0008.mp4", "id21_id29_0001.mp4", "id31_id35_0005.mp4", "id29_id35_0002.mp4", "id4_id28_0003.mp4", "id54_id55_0000.mp4", "id19_id24_0009.mp4", "id34_id35_0007.mp4", "id13_id7_0012.mp4", "id9_id28_0005.mp4", "id3_id28_0006.mp4", "id41_id40_0007.mp4", "id32_id37_0004.mp4", "id34_id35_0009.mp4", "id60_id59_0007.mp4", "id1_id4_0002.mp4", "id21_id22_0008.mp4", "id48_id43_0005.mp4", "id40_id44_0003.mp4", "id19_id25_0008.mp4", "id21_id28_0007.mp4", "id17_id3_0009.mp4", "id2_id30_0002.mp4", "id44_id39_0003.mp4", "id21_id19_0009.mp4", "id31_id26_0003.mp4", "id48_id39_0003.mp4", "id53_id52_0000.mp4", "id37_id2_0002.mp4", "id21_id24_0007.mp4", "id4_id31_0002.mp4", "id27_id23_0008.mp4", "id37_id30_0004.mp4", "id43_id41_0009.mp4", "id29_id38_0005.mp4", "id3_id21_0002.mp4", "id39_id45_0008.mp4", "id37_id34_0001.mp4", "id32_id26_0006.mp4", "id35_0008.mp4", "id61_0005.mp4", "id60_0007.mp4", "id17_0001.mp4", "id0_0007.mp4", "id49_0003.mp4", "id6_0006.mp4", "id53_0003.mp4", "id57_0003.mp4", "id28_0002.mp4", "id24_0000.mp4", "id2_0009.mp4", "id2_0003.mp4", "id51_0007.mp4", "id39_0003.mp4", "id16_0011.mp4", "id6_0000.mp4", "id29_0006.mp4", "id16_0007.mp4", "id23_0008.mp4", "id11_0000.mp4", "id55_0002.mp4", "id3_0003.mp4", "id60_0004.mp4", "id16_0009.mp4", "id57_0009.mp4", "id57_0007.mp4", "id49_0005.mp4", "id40_0000.mp4", "id0_0009.mp4", "id5_0006.mp4", "id60_0008.mp4", "id44_0001.mp4", "id30_0002.mp4", "id45_0009.mp4", "id21_0000.mp4", "id22_0008.mp4", "id5_0000.mp4", "id2_0002.mp4", "id45_0007.mp4", "id6_0003.mp4", "id27_0004.mp4", "id39_0007.mp4", "id44_0003.mp4", "id43_0008.mp4", "id31_0007.mp4", "id35_0009.mp4", "id49_0000.mp4", "id21_0005.mp4", "id28_0006.mp4", "id8_0004.mp4", "id51_0001.mp4", "id33_0001.mp4", "id27_0001.mp4", "id41_0008.mp4", "id60_0009.mp4", "id30_0003.mp4", "id45_0004.mp4", "id12_0000.mp4", "id8_0000.mp4", "id33_0009.mp4", "id38_0000.mp4", "id10_0007.mp4", "id50_0008.mp4", "id61_0001.mp4", "id59_0007.mp4", "id0_0006.mp4", "id13_0015.mp4", "id38_0005.mp4", "id43_0004.mp4", "id13_0007.mp4", "id26_0004.mp4", "id26_0006.mp4", "id4_0000.mp4", "id52_0001.mp4", "id38_0006.mp4", "id32_0004.mp4", "id25_0006.mp4", "id27_0003.mp4", "id52_0005.mp4", "id57_0005.mp4", "id59_0004.mp4", "id56_0005.mp4", "id35_0003.mp4", "id4_0009.mp4", "id11_0001.mp4", "id38_0001.mp4", "id37_0004.mp4", "id17_0006.mp4", "id25_0007.mp4", "id32_0006.mp4", "id22_0004.mp4", "id48_0003.mp4", "id26_0005.mp4", "id4_0003.mp4", "id5_0008.mp4", "id24_0002.mp4", "id10_0002.mp4", "id43_0000.mp4", "id38_0009.mp4", "id35_0007.mp4", "id1_0004.mp4", "id52_0002.mp4", "id44_0004.mp4", "id46_0009.mp4", "id9_0007.mp4", "id26_0007.mp4", "id56_0000.mp4", "id11_0002.mp4", "id23_0006.mp4", "id37_0007.mp4", "id24_0005.mp4", "id33_0005.mp4", "id47_0000.mp4", "id59_0001.mp4", "id31_0003.mp4", "id10_0008.mp4", "id51_0006.mp4", "id10_0003.mp4", "id21_0004.mp4", "id29_0000.mp4", "id33_0000.mp4", "id55_0005.mp4", "id45_0008.mp4", "id28_0004.mp4", "id32_0007.mp4", "id19_0008.mp4", "id2_0005.mp4", "id27_0007.mp4", "id49_0008.mp4", "id22_0002.mp4", "id16_0005.mp4", "id53_0002.mp4", "id32_0001.mp4", "id10_0005.mp4", "id38_0007.mp4", "id4_0006.mp4", "id31_0009.mp4", "id46_0002.mp4", "id33_0008.mp4", "id30_0007.mp4", "id48_0008.mp4", "id0_0004.mp4", "id24_0004.mp4", "id40_0003.mp4", "id16_0001.mp4", "id22_0001.mp4", "id28_0009.mp4", "id60_0001.mp4", "id34_0002.mp4", "id41_0005.mp4", "id60_0000.mp4", "id20_0001.mp4", "id58_0004.mp4", "id42_0001.mp4", "id45_0006.mp4", "id23_0003.mp4", "id9_0009.mp4", "id40_0009.mp4", "id47_0002.mp4", "id50_0004.mp4", "id33_0004.mp4", "id55_0001.mp4", "id30_0000.mp4", "id2_0000.mp4", "id54_0007.mp4", "id30_0005.mp4", "id37_0006.mp4", "id33_0007.mp4", "id34_0006.mp4", "id11_0008.mp4", "id19_0001.mp4", "id52_0006.mp4", "id3_0006.mp4", "id49_0007.mp4", "id58_0009.mp4", "id13_0000.mp4", "id32_0008.mp4", "id21_0003.mp4", "id23_0002.mp4", "id22_0000.mp4", "id3_0001.mp4", "id2_0007.mp4", "id53_0007.mp4", "id53_0008.mp4", "id0_0005.mp4", "id21_0001.mp4", "id34_0001.mp4", "id13_0009.mp4", "id12_0006.mp4", "id3_0002.mp4", "id36_0002.mp4", "id39_0000.mp4", "id26_0002.mp4", "id57_0008.mp4", "id25_0010.mp4", "id53_0005.mp4", "id1_0001.mp4", "id38_0003.mp4", "id58_0007.mp4", "id8_0006.mp4", "id26_0009.mp4", "id16_0002.mp4", "id54_0000.mp4", "id7_0009.mp4", "id5_0005.mp4", "id23_0007.mp4", "id17_0005.mp4", "id20_0005.mp4", "id7_0005.mp4", "id59_0002.mp4", "id36_0006.mp4", "id59_0009.mp4", "id59_0006.mp4", "id21_0009.mp4", "id20_0003.mp4", "id17_0007.mp4", "id48_0005.mp4", "id34_0003.mp4", "id40_0001.mp4", "id53_0006.mp4", "id17_0003.mp4", "id36_0000.mp4", "id22_0009.mp4", "id32_0005.mp4", "id36_0007.mp4", "id48_0000.mp4", "id27_0009.mp4", "id29_0004.mp4", "id19_0000.mp4", "id50_0009.mp4", "id16_0010.mp4", "id33_0003.mp4", "id48_0002.mp4", "id1_0008.mp4", "id13_0014.mp4", "id47_0007.mp4", "id52_0007.mp4", "id30_0006.mp4", "id50_0006.mp4", "id58_0008.mp4", "id46_0006.mp4", "id13_0012.mp4", "id13_0003.mp4", "id19_0007.mp4", "id40_0006.mp4", "id23_0000.mp4", "id43_0007.mp4", "id20_0000.mp4", "id9_0000.mp4", "id13_0005.mp4", "id3_0008.mp4", "id60_0006.mp4", "id54_0006.mp4", "id59_0003.mp4", "id45_0002.mp4", "id61_0002.mp4", "id41_0000.mp4", "id31_0001.mp4", "id9_0005.mp4", "id10_0006.mp4", "id5_0003.mp4", "id39_0002.mp4", "id31_0008.mp4", "id0_0000.mp4", "id34_0005.mp4", "id61_0007.mp4", "id55_0006.mp4", "id8_0001.mp4", "id56_0002.mp4", "id17_0002.mp4", "id61_0008.mp4", "id9_0004.mp4", "id24_0001.mp4", "id56_0003.mp4", "id22_0003.mp4", "id51_0003.mp4", "id46_0005.mp4", "id21_0006.mp4", "id45_0001.mp4", "id8_0008.mp4", "id25_0008.mp4", "id35_0005.mp4", "id60_0005.mp4", "id12_0002.mp4", "id7_0002.mp4", "id4_0002.mp4", "id37_0000.mp4", "id23_0004.mp4", "id50_0002.mp4", "id46_0008.mp4", "id4_0008.mp4", "id30_0001.mp4", "id25_0000.mp4", "id41_0004.mp4", "id2_0001.mp4", "id7_0003.mp4", "id52_0004.mp4", "id29_0008.mp4", "id60_0003.mp4", "id31_0004.mp4", "id50_0007.mp4", "id24_0009.mp4", "id8_0003.mp4", "id25_0004.mp4", "id35_0000.mp4", "id55_0007.mp4", "id53_0009.mp4", "id53_0001.mp4", "id3_0004.mp4", "id1_0007.mp4", "id21_0002.mp4", "id10_0004.mp4", "id57_0004.mp4", "id1_0009.mp4", "id9_0002.mp4", "id35_0006.mp4", "id19_0004.mp4", "id25_0002.mp4", "id11_0006.mp4", "id54_0004.mp4", "id45_0000.mp4", "id1_0006.mp4", "id27_0006.mp4", "id2_0004.mp4", "id5_0007.mp4", "id40_0008.mp4", "id13_0002.mp4", "id17_0009.mp4", "id36_0005.mp4", "id50_0005.mp4", "id5_0001.mp4", "id47_0004.mp4", "id47_0009.mp4", "id6_0005.mp4", "id5_0004.mp4", "id26_0008.mp4", "id13_0008.mp4", "id29_0001.mp4", "id34_0008.mp4", "id1_0005.mp4", "id28_0007.mp4", "id11_0010.mp4", "id24_0003.mp4", "id28_0000.mp4", "id61_0009.mp4", "id34_0004.mp4", "id9_0008.mp4", "id37_0002.mp4", "id52_0009.mp4", "id4_0001.mp4", "id17_0004.mp4", "id40_0007.mp4", "id20_0008.mp4", "id1_0000.mp4", "id48_0006.mp4", "id40_0005.mp4", "id11_0004.mp4", "id12_0004.mp4", "id1_0002.mp4", "id37_0008.mp4", "id34_0007.mp4", "id36_0008.mp4", "id34_0000.mp4", "id46_0004.mp4", "id39_0005.mp4", "id36_0009.mp4", "id47_0005.mp4", "id25_0001.mp4", "id28_0001.mp4", "id52_0000.mp4", "id10_0000.mp4", "id39_0001.mp4", "id33_0006.mp4", "id36_0004.mp4", "id7_0008.mp4", "id51_0005.mp4", "id51_0000.mp4", "id2_0006.mp4", "id39_0004.mp4", "id50_0000.mp4", "id43_0009.mp4", "id26_0003.mp4", "id61_0003.mp4", "id7_0004.mp4", "id46_0001.mp4", "id23_0005.mp4", "id1_0003.mp4", "id20_0009.mp4", "id27_0002.mp4", "id16_0004.mp4", "id50_0001.mp4", "id55_0003.mp4", "id30_0008.mp4", "id49_0001.mp4", "id19_0005.mp4", "id6_0008.mp4", "id48_0004.mp4", "id3_0000.mp4", "id54_0003.mp4", "id59_0008.mp4", "id38_0002.mp4", "id41_0009.mp4", "id37_0009.mp4", "id23_0001.mp4", "id36_0003.mp4", "id11_0005.mp4", "id23_0009.mp4", "id58_0001.mp4", "id7_0007.mp4", "id29_0009.mp4", "id55_0004.mp4", "id51_0009.mp4", "id22_0007.mp4", "id8_0005.mp4", "id47_0003.mp4", "id52_0008.mp4", "id47_0001.mp4", "id40_0002.mp4", "id58_0005.mp4", "id19_0003.mp4", "id46_0007.mp4", "id48_0009.mp4", "id16_0012.mp4", "id31_0002.mp4", "id54_0005.mp4", "id6_0007.mp4", "id4_0007.mp4", "id47_0006.mp4", "id56_0008.mp4", "id42_0003.mp4", "id16_0008.mp4", "id58_0000.mp4", "id56_0007.mp4", "id58_0003.mp4", "id32_0002.mp4", "id7_0001.mp4", "id12_0001.mp4", "id53_0000.mp4", "id3_0005.mp4", "id51_0002.mp4", "id5_0009.mp4", "id9_0001.mp4", "id31_0006.mp4", "id11_0009.mp4", "id0_0003.mp4", "id36_0001.mp4", "id57_0001.mp4", "id32_0000.mp4", "id38_0004.mp4", "id4_0004.mp4", "id42_0002.mp4", "id41_0006.mp4", "id11_0007.mp4", "id41_0007.mp4", "id58_0002.mp4", "id10_0001.mp4", "id25_0009.mp4", "id26_0000.mp4", "id39_0009.mp4", "id44_0005.mp4", "id54_0001.mp4", "id16_0000.mp4", "id56_0009.mp4", "id30_0009.mp4", "id7_0000.mp4", "id13_0001.mp4", "id20_0004.mp4", "id20_0006.mp4", "id3_0007.mp4", "id54_0002.mp4", "id49_0009.mp4", "id22_0006.mp4", "id32_0009.mp4", "id40_0004.mp4", "id16_0003.mp4", "id6_0004.mp4", "id19_0002.mp4", "id49_0004.mp4", "id57_0000.mp4", "id41_0003.mp4", "id27_0005.mp4", "id28_0003.mp4", "id20_0007.mp4", "id16_0013.mp4", "id49_0006.mp4", "id25_0005.mp4", "id35_0002.mp4", "id29_0003.mp4", "id41_0001.mp4", "id34_0009.mp4", "id39_0008.mp4", "id37_0001.mp4", "id2_0008.mp4", "id58_0006.mp4", "id59_0000.mp4", "id43_0003.mp4", "id6_0001.mp4", "id28_0008.mp4", "id43_0002.mp4", "id28_0005.mp4", "id31_0005.mp4", "id39_0006.mp4", "id29_0007.mp4", "id19_0009.mp4", "id42_0000.mp4", "id54_0008.mp4", "id0_0002.mp4", "id43_0006.mp4", "id6_0002.mp4", "id59_0005.mp4", "id50_0003.mp4", "id24_0006.mp4", "id24_0008.mp4", "id44_0002.mp4", "id56_0004.mp4", "id46_0003.mp4", "id5_0002.mp4", "id48_0001.mp4", "id43_0001.mp4", "id17_0000.mp4", "id61_0000.mp4", "id8_0007.mp4", "id53_0004.mp4", "id13_0004.mp4", "id37_0003.mp4", "id44_0000.mp4", "id35_0001.mp4", "id32_0003.mp4", "id61_0006.mp4", "id46_0000.mp4", "id49_0002.mp4", "id13_0006.mp4", "id0_0001.mp4", "id56_0006.mp4", "id61_0004.mp4", "id55_0009.mp4", "id56_0001.mp4", "id25_0003.mp4", "id17_0008.mp4", "id3_0009.mp4", "id55_0008.mp4", "id8_0009.mp4", "id26_0001.mp4", "id21_0008.mp4", "id60_0002.mp4", "id21_0007.mp4", "id20_0002.mp4", "id54_0009.mp4", "id13_0010.mp4", "id13_0013.mp4", "id57_0006.mp4", "id4_0005.mp4", "id29_0002.mp4", "id27_0000.mp4", "id8_0002.mp4", "id6_0009.mp4", "id30_0004.mp4", "id55_0000.mp4", "id51_0008.mp4", "id22_0005.mp4", "id9_0006.mp4", "id11_0003.mp4", "id43_0005.mp4", "id35_0004.mp4", "id38_0008.mp4", "id47_0008.mp4", "id19_0006.mp4", "id27_0008.mp4", "id12_0003.mp4", "id0_0008.mp4", "id29_0005.mp4", "id9_0003.mp4", "id10_0009.mp4", "id57_0002.mp4", "id37_0005.mp4", "id13_0011.mp4", "id42_0004.mp4", "id31_0000.mp4", "id16_0006.mp4", "id45_0003.mp4", "id41_0002.mp4", "id24_0007.mp4", "id52_0003.mp4", "id7_0006.mp4", "id12_0005.mp4", "id48_0007.mp4", "id45_0005.mp4", "id33_0002.mp4", "id51_0004.mp4"], "pred": [0.9049304127693176, 0.9334169030189514, 0.9125046133995056, 0.8442766070365906, 0.9888551235198975, 0.9265003204345703, 0.9375059604644775, 0.27301502227783203, 0.9865151047706604, 0.8266230821609497, 0.8408178687095642, 0.6402775049209595, 0.9991927146911621, 0.9989108443260193, 0.9246751666069031, 0.9857013821601868, 0.9911975860595703, 0.9970452785491943, 0.9986633062362671, 0.9184817671775818, 0.5613716244697571, 0.9600786566734314, 0.9868799448013306, 0.9994282722473145, 0.8620352149009705, 0.8899058103561401, 0.9988538026809692, 0.9977072477340698, 0.7624931931495667, 0.9989054203033447, 0.9803078174591064, 0.999025285243988, 0.5445606112480164, 0.8059937357902527, 0.9448681473731995, 0.9990197420120239, 0.9405457973480225, 0.7934823632240295, 0.6746483445167542, 0.9975679516792297, 0.9228529334068298, 0.9839715957641602, 0.5042939186096191, 0.9898456931114197, 0.6766539812088013, 0.6614354848861694, 0.9987278580665588, 0.9273276925086975, 0.9872313141822815, 0.9825079441070557, 0.9972560405731201, 0.9449518918991089, 0.8760380148887634, 0.7204744815826416, 0.9952993988990784, 0.9998893737792969, 0.9156658053398132, 0.9760566353797913, 0.9894698858261108, 0.9501434564590454, 0.9419049620628357, 0.9999770522117615, 0.9857081770896912, 0.8614304661750793, 0.7882617712020874, 0.998769998550415, 0.959502637386322, 0.9997270703315735, 0.8541216254234314, 0.9457547664642334, 0.9892469644546509, 0.9987024664878845, 0.918121337890625, 0.60257488489151, 0.8993815183639526, 0.8518669605255127, 0.8470008373260498, 0.9980039000511169, 0.9882696270942688, 0.9972108602523804, 0.999937891960144, 0.999742329120636, 0.6790089011192322, 0.9992795586585999, 0.9997159838676453, 0.9154474139213562, 0.9864346981048584, 0.9920104146003723, 0.9996821880340576, 0.9999381303787231, 0.9409649968147278, 0.9994194507598877, 0.9997210502624512, 0.9425525665283203, 0.982149600982666, 0.6206291913986206, 0.8637682199478149, 0.987474799156189, 0.9645647406578064, 0.982179582118988, 0.8533310294151306, 0.9995229244232178, 0.8021513223648071, 0.9992057085037231, 0.6400915384292603, 0.9943258762359619, 0.8070068359375, 0.6339424252510071, 0.9499875903129578, 0.9993112087249756, 0.9524405598640442, 0.9976859092712402, 0.9956268668174744, 0.9141618609428406, 0.9998214840888977, 0.9052069187164307, 0.9032909274101257, 0.9035014510154724, 0.988904595375061, 0.999232292175293, 0.9969443082809448, 0.9318135380744934, 0.9629398584365845, 0.8124497532844543, 0.8087577819824219, 0.9971462488174438, 0.9998191595077515, 0.9976741671562195, 0.9995905160903931, 0.9755356311798096, 0.8758669495582581, 0.8288025259971619, 0.9828982353210449, 0.9571189880371094, 0.9643374085426331, 0.7794814705848694, 0.5218032002449036, 0.557264506816864, 0.8864148259162903, 0.9955492615699768, 0.994251549243927, 0.8995100259780884, 0.9997596144676208, 0.8730080723762512, 0.9463218450546265, 0.9946808815002441, 0.9996715784072876, 0.9432015419006348, 0.9482523202896118, 0.8992785215377808, 0.4982859194278717, 0.9714369773864746, 0.9640925526618958, 0.9925052523612976, 0.8958846926689148, 0.9989000558853149, 0.9944208264350891, 0.9632864594459534, 0.9896480441093445, 0.9920542240142822, 0.9158841967582703, 0.7741634249687195, 0.8409118056297302, 0.9999772906303406, 0.9990192651748657, 0.9990418553352356, 0.8668479919433594, 0.8089014887809753, 0.979671835899353, 0.8910982608795166, 0.9994572401046753, 0.998101532459259, 0.9566410779953003, 0.8460898399353027, 0.9746049642562866, 0.9898878335952759, 0.9859052896499634, 0.9841592311859131, 0.8513898253440857, 0.9637824296951294, 0.9448837041854858, 0.7630841135978699, 0.9690133929252625, 0.9987379312515259, 0.9999086856842041, 0.9992465376853943, 0.9203112721443176, 0.8451416492462158, 0.6445128321647644, 0.9934297204017639, 0.7625944018363953, 0.9191869497299194, 0.9089991450309753, 0.9911051392555237, 0.9998867511749268, 0.9365519285202026, 0.8859903812408447, 0.9999198317527771, 0.9024247527122498, 0.9558952450752258, 0.7496740818023682, 0.8588100671768188, 0.9952287077903748, 0.8203213214874268, 0.9996839761734009, 0.8880026936531067, 0.9994924664497375, 0.7463278770446777, 0.9992542266845703, 0.9592204689979553, 0.839810848236084, 0.9592331051826477, 0.9596003890037537, 0.959520161151886, 0.998779833316803, 0.9338169693946838, 0.9990355968475342, 0.9997914433479309, 0.9998887777328491, 0.917650580406189, 0.9025530815124512, 0.9985575675964355, 0.9948305487632751, 0.7695139050483704, 0.9638828635215759, 0.9957094788551331, 0.993678629398346, 0.980649471282959, 0.9408656358718872, 0.9796997308731079, 0.95979243516922, 0.8509438037872314, 0.9950322508811951, 0.8505274653434753, 0.9998549818992615, 0.8760553598403931, 0.6720860004425049, 0.8464288115501404, 0.9999467730522156, 0.7918115854263306, 0.9306102395057678, 0.7509388327598572, 0.9366584420204163, 0.9763615727424622, 0.9948852062225342, 0.9967785477638245, 0.9430627822875977, 0.923549234867096, 0.949874222278595, 0.9963685274124146, 0.9822617173194885, 0.891815721988678, 0.9491202235221863, 0.8454599380493164, 0.5416938662528992, 0.9885128736495972, 0.9745563268661499, 0.9940565228462219, 0.9741263389587402, 0.9835060834884644, 0.9079802632331848, 0.8437721133232117, 0.8425219655036926, 0.9985216856002808, 0.9934700131416321, 0.9206514954566956, 0.9322416186332703, 0.8930855393409729, 0.9155839085578918, 0.9955708980560303, 0.8401092290878296, 0.9970499277114868, 0.8985908627510071, 0.9152418971061707, 0.9600964784622192, 0.8414545059204102, 0.9766495227813721, 0.9951019287109375, 0.9901754260063171, 0.9290804266929626, 0.9718271493911743, 0.7789142727851868, 0.9891974925994873, 0.9053797125816345, 0.7114356756210327, 0.9894875288009644, 0.9221958518028259, 0.9998584985733032, 0.9999089241027832, 0.919736921787262, 0.9842742085456848, 0.7624320983886719, 0.9614719152450562, 0.9961243867874146, 0.9485183358192444, 0.7768088579177856, 0.8464733958244324, 0.9975727796554565, 0.9558455944061279, 0.8914231657981873, 0.9999473094940186, 0.563640832901001, 0.8497775197029114, 0.4989411234855652, 0.8213416934013367, 0.9998033046722412, 0.9979131817817688, 0.9898054003715515, 0.8956587314605713, 0.987756073474884, 0.8558085560798645, 0.9252558350563049, 0.915879487991333, 0.9881813526153564, 0.9570828676223755, 0.8434594869613647, 0.9567779898643494, 0.9994311928749084, 0.9160760641098022, 0.5100481510162354, 0.857492983341217, 0.9859774112701416, 0.8727120161056519, 0.9335705637931824, 0.9732800126075745, 0.9999459981918335, 0.9715930819511414, 0.9714415073394775, 0.9592438340187073, 0.6740520000457764, 0.9948232173919678, 0.9800362586975098, 0.9767503142356873, 0.9487857222557068, 0.9029514193534851, 0.7930575609207153, 0.8486601710319519, 0.9989168643951416, 0.9279761910438538, 0.9062144160270691, 0.993809163570404, 0.9996689558029175, 0.847222089767456, 0.9534276723861694, 0.9637832045555115, 0.9629220366477966, 0.9304707646369934, 0.9989538192749023, 0.9996755719184875, 0.9995822906494141, 0.5648572444915771, 0.9752168655395508, 0.9996947646141052, 0.8554248809814453, 0.9781369566917419, 0.9290450811386108, 0.9999082088470459, 0.43708091974258423, 0.9965492486953735, 0.8929766416549683, 0.9970310926437378, 0.9219664335250854, 0.4908332824707031, 0.9733462333679199, 0.8953752517700195, 0.9466320872306824, 0.8319580554962158, 0.9995212554931641, 0.9648770689964294, 0.9802000522613525, 0.9910898804664612, 0.9921233654022217, 0.9866103529930115, 0.9666208028793335, 0.9972493648529053, 0.9873234033584595, 0.910245418548584, 0.8690957427024841, 0.9667354822158813, 0.6861346364021301, 0.7546114325523376, 0.9934546947479248, 0.47835952043533325, 0.9985808730125427, 0.6260605454444885, 0.9550797939300537, 0.9864908456802368, 0.9848319888114929, 0.9948703050613403, 0.999957263469696, 0.96180260181427, 0.999558687210083, 0.9912912249565125, 0.7778939604759216, 0.9982017278671265, 0.9252403974533081, 0.991518497467041, 0.9569573402404785, 0.9990572929382324, 0.9220952391624451, 0.6051684021949768, 0.8995411396026611, 0.9997386932373047, 0.993470311164856, 0.9544575214385986, 0.8126717209815979, 0.9999288320541382, 0.8344295024871826, 0.9978764057159424, 0.9931002259254456, 0.9985518455505371, 0.9849092960357666, 0.9960576295852661, 0.9228348135948181, 0.8155112862586975, 0.7500094771385193, 0.8433648347854614, 0.9562760591506958, 0.9400294423103333, 0.8292100429534912, 0.9896128177642822, 0.9935387372970581, 0.9995683431625366, 0.9995012283325195, 0.9779567718505859, 0.9975463151931763, 0.734043538570404, 0.9962928891181946, 0.9864115715026855, 0.9978926777839661, 0.9702151417732239, 0.48235100507736206, 0.9806659817695618, 0.9973187446594238, 0.9864465594291687, 0.9332133531570435, 0.9713776707649231, 0.9999138116836548, 0.7276638150215149, 0.9003786444664001, 0.8402112126350403, 0.9992673397064209, 0.9993240833282471, 0.9996970295906067, 0.9624679684638977, 0.6224601864814758, 0.9937485456466675, 0.9864571690559387, 0.9305756688117981, 0.6688494682312012, 0.9314640164375305, 0.9705662727355957, 0.9998120665550232, 0.9975730776786804, 0.9713601469993591, 0.8280355930328369, 0.9999226927757263, 0.7529072761535645, 0.6739504337310791, 0.7876818180084229, 0.9707424640655518, 0.9712210297584534, 0.8629437685012817, 0.9503186345100403, 0.6492555141448975, 0.8733296394348145, 0.8424450159072876, 0.9989075064659119, 0.9974770545959473, 0.9954795241355896, 0.8444902896881104, 0.997011661529541, 0.9990081191062927, 0.8687012195587158, 0.9391975998878479, 0.8087038397789001, 0.9998821020126343, 0.9727391600608826, 0.9397740960121155, 0.9344150424003601, 0.90985107421875, 0.9963236451148987, 0.9864668250083923, 0.9991320371627808, 0.812405526638031, 0.8692823648452759, 0.8782967329025269, 0.9694663882255554, 0.5866105556488037, 0.6693134903907776, 0.9975519180297852, 0.9552650451660156, 0.9736007452011108, 0.9945081472396851, 0.8093761801719666, 0.9117431044578552, 0.8968167901039124, 0.7031295895576477, 0.9992133378982544, 0.7621579170227051, 0.9972475171089172, 0.7797631621360779, 0.9979007840156555, 0.9738873243331909, 0.9992305636405945, 0.8489065170288086, 0.9952968955039978, 0.9545471668243408, 0.7808033227920532, 0.9827216267585754, 0.8815197944641113, 0.9983050227165222, 0.9911931157112122, 0.9992938041687012, 0.9196658134460449, 0.5971109867095947, 0.9425859451293945, 0.8599827289581299, 0.9458077549934387, 0.8490157127380371, 0.958713173866272, 0.9974443316459656, 0.9366334676742554, 0.6267778873443604, 0.9044156670570374, 0.8168454170227051, 0.998623788356781, 0.9740513563156128, 0.8648455739021301, 0.9766392707824707, 0.859573245048523, 0.951000988483429, 0.9867894649505615, 0.9990777969360352, 0.9977850914001465, 0.8543388843536377, 0.866502046585083, 0.9726735949516296, 0.9864359498023987, 0.9973914623260498, 0.5170500874519348, 0.8524960875511169, 0.9958288073539734, 0.9004324078559875, 0.9997979402542114, 0.9571567177772522, 0.7687963247299194, 0.9787697196006775, 0.8868021368980408, 0.999335527420044, 0.6774932146072388, 0.9862273335456848, 0.9821979403495789, 0.7031815052032471, 0.8984429836273193, 0.9999512434005737, 0.8285276889801025, 0.9943023324012756, 0.9896110892295837, 0.9999357461929321, 0.9645019173622131, 0.8715536594390869, 0.997990071773529, 0.943013608455658, 0.9504206776618958, 0.9996527433395386, 0.9995668530464172, 0.8910560607910156, 0.9991127252578735, 0.889803946018219, 0.9256731867790222, 0.9818256497383118, 0.6239970922470093, 0.953127384185791, 0.8165776133537292, 0.9951469302177429, 0.9992262125015259, 0.9482461810112, 0.999845564365387, 0.9878771901130676, 0.9968829154968262, 0.8932557106018066, 0.9499000310897827, 0.9724264144897461, 0.7306203246116638, 0.999149739742279, 0.9974182844161987, 0.5073623657226562, 0.974210262298584, 0.9696283340454102, 0.9653053283691406, 0.952927827835083, 0.19938957691192627, 0.003184378147125244, 0.026364564895629883, 0.5766341090202332, 0.00473862886428833, 0.06527465581893921, 0.0401650071144104, 0.7420300841331482, 0.749232292175293, 0.21933907270431519, 0.3324955105781555, 0.0005000829696655273, 0.0013930201530456543, 0.07810097932815552, 0.09088832139968872, 0.06634366512298584, 0.0638161301612854, 0.0039002299308776855, 0.08167839050292969, 0.4396270513534546, 0.12579584121704102, 0.441875696182251, 0.0016208887100219727, 0.18059790134429932, 0.00016129016876220703, 0.07887578010559082, 0.09471124410629272, 0.11244457960128784, 0.23071622848510742, 0.10933780670166016, 0.0792573094367981, 0.0018768310546875, 0.5390976667404175, 0.22382956743240356, 0.00028765201568603516, 0.06242853403091431, 0.07038909196853638, 0.017644405364990234, 7.915496826171875e-05, 0.23253023624420166, 0.5193948745727539, 0.7296099662780762, 0.1077149510383606, 0.0031051039695739746, 0.026003360748291016, 0.3402553200721741, 0.12381249666213989, 0.2948330044746399, 0.00043278932571411133, 0.2758212089538574, 0.5812305212020874, 0.18860846757888794, 0.3841044306755066, 0.2175508737564087, 0.2604109048843384, 0.5684149265289307, 0.173376202583313, 0.21163183450698853, 0.1846141219139099, 0.018425345420837402, 0.2523903250694275, 0.47094881534576416, 0.010627985000610352, 0.39114850759506226, 0.5, 0.31526118516921997, 0.4850131869316101, 0.0828406810760498, 0.021117031574249268, 0.2086750864982605, 0.03919553756713867, 0.2009108066558838, 0.5163147449493408, 0.002742290496826172, 0.4514915347099304, 0.32123297452926636, 0.7088829874992371, 0.3040475845336914, 0.23314565420150757, 0.3271372318267822, 0.01605778932571411, 0.015840530395507812, 0.024657130241394043, 0.8073418736457825, 0.0952153205871582, 0.15754753351211548, 0.3154223561286926, 0.009514451026916504, 0.016648411750793457, 0.0367048978805542, 0.8423108458518982, 0.29655879735946655, 0.01831662654876709, 0.8610737323760986, 0.0018392205238342285, 0.016378581523895264, 0.03715229034423828, 0.0016970038414001465, 0.2743804454803467, 0.4802677631378174, 0.24503564834594727, 0.08724558353424072, 0.8020316362380981, 0.09833991527557373, 0.01851099729537964, 0.010040044784545898, 0.918498158454895, 0.2931838631629944, 0.12267285585403442, 0.4821482300758362, 0.027797341346740723, 0.0013751387596130371, 0.30018842220306396, 0.010474085807800293, 0.0055751800537109375, 0.24467605352401733, 0.011796116828918457, 0.4993703365325928, 0.005527138710021973, 0.03511923551559448, 0.03163379430770874, 0.448813796043396, 0.9419283866882324, 0.19163882732391357, 0.35798877477645874, 0.4551912546157837, 0.20147401094436646, 0.00036782026290893555, 0.10106760263442993, 0.7803454995155334, 0.4972792863845825, 0.19990617036819458, 0.20013898611068726, 0.04995483160018921, 0.0014223456382751465, 0.32755500078201294, 0.043233633041381836, 0.42310434579849243, 0.03753858804702759, 0.5226877927780151, 0.01621401309967041, 0.511121392250061, 0.22166353464126587, 0.3143966794013977, 0.06586092710494995, 0.21381932497024536, 0.0012863874435424805, 0.0034499168395996094, 0.10261118412017822, 0.19427049160003662, 0.549268364906311, 0.21980100870132446, 0.06048792600631714, 0.0004698038101196289, 0.33519744873046875, 0.8384158611297607, 0.0256081223487854, 0.3995431661605835, 0.17708200216293335, 0.04900306463241577, 0.2679207921028137, 0.060567259788513184, 0.9040517210960388, 0.23234045505523682, 0.06012928485870361, 0.21077555418014526, 0.46479159593582153, 0.303893506526947, 0.011549234390258789, 0.379008948802948, 0.13748252391815186, 0.29538285732269287, 0.7549336552619934, 0.056168437004089355, 0.45574748516082764, 0.2035660743713379, 0.5404508113861084, 0.19638705253601074, 0.10206067562103271, 0.13675063848495483, 0.01741635799407959, 0.06462705135345459, 0.0070719122886657715, 0.33454811573028564, 0.0023702383041381836, 0.6514561772346497, 0.2333739995956421, 0.09227210283279419, 0.34977084398269653, 0.07871025800704956, 0.0039370059967041016, 0.15606117248535156, 0.12319415807723999, 0.46787601709365845, 0.9137527942657471, 0.2051052451133728, 0.6874432563781738, 0.012174725532531738, 0.2694186568260193, 0.11173838376998901, 0.0006366372108459473, 0.46129000186920166, 0.07335853576660156, 0.2351887822151184, 0.0074558258056640625, 0.00042808055877685547, 0.31872546672821045, 0.039846062660217285, 0.00021976232528686523, 0.7310790419578552, 0.004286706447601318, 0.5391860604286194, 0.21381014585494995, 0.17535048723220825, 0.17001253366470337, 0.13915109634399414, 0.5303628444671631, 0.13707959651947021, 0.14492082595825195, 0.2282295823097229, 0.07694834470748901, 0.3952140212059021, 0.1547146439552307, 0.6680203676223755, 0.019667863845825195, 0.07039737701416016, 0.12186574935913086, 0.00017750263214111328, 0.025728225708007812, 0.006032049655914307, 0.11703848838806152, 0.0003147125244140625, 0.3300026059150696, 0.0014399886131286621, 0.02484595775604248, 0.5742251873016357, 0.8082042932510376, 0.053216636180877686, 0.7657437324523926, 0.08990490436553955, 0.05922049283981323, 0.11262202262878418, 0.13568466901779175, 0.41861575841903687, 0.006006121635437012, 0.06304532289505005, 0.18853265047073364, 0.001277327537536621, 0.5025997757911682, 0.24291419982910156, 0.08789241313934326, 0.08331066370010376, 0.5989946722984314, 0.49719715118408203, 0.29545605182647705, 0.7170950770378113, 0.3468942642211914, 0.011626958847045898, 0.12852811813354492, 0.1512553095817566, 0.13088834285736084, 0.07673722505569458, 0.32918572425842285, 0.496660053730011, 0.501146137714386, 0.032125115394592285, 0.01954275369644165, 0.04817962646484375, 0.30480730533599854, 0.07481551170349121, 0.3595883846282959, 0.20483171939849854, 0.10309785604476929, 0.00650709867477417, 0.2317202091217041, 0.6583006978034973, 0.7169403433799744, 0.41630762815475464, 0.5301188230514526, 0.2636844515800476, 0.608655571937561, 0.05560100078582764, 0.7465775012969971, 0.2799590229988098, 0.19612526893615723, 0.02819114923477173, 0.004622042179107666, 0.31754422187805176, 0.7731707096099854, 0.030206620693206787, 0.14575397968292236, 0.008710861206054688, 0.3503825068473816, 0.021634161472320557, 0.08053648471832275, 0.5987367033958435, 0.026567816734313965, 0.494953453540802, 0.053661227226257324, 0.9486934542655945, 0.12302309274673462, 0.507076621055603, 0.14851748943328857, 0.4440048933029175, 0.017387211322784424, 0.2514088749885559, 0.09422767162322998, 0.5182207822799683, 0.02920442819595337, 0.014671564102172852, 0.12221914529800415, 0.07480919361114502, 0.010376930236816406, 0.0103873610496521, 0.38423025608062744, 0.017581045627593994, 0.059953391551971436, 0.0005435943603515625, 0.4731887876987457, 0.5958287119865417, 0.49235594272613525, 0.43101584911346436, 0.07026761770248413, 0.8891772627830505, 0.005928754806518555, 0.06657308340072632, 0.17253166437149048, 0.03134363889694214, 0.26663440465927124, 0.0006794929504394531, 0.5746561288833618, 0.13733285665512085, 0.15042442083358765, 0.12286239862442017, 0.4963282346725464, 0.1720476746559143, 0.12485861778259277, 0.0005462169647216797, 0.023235201835632324, 0.6283208131790161, 0.4813167452812195, 0.056605398654937744, 0.18927335739135742, 0.18701398372650146, 0.044074833393096924, 0.4689491391181946, 0.04855239391326904, 0.3526309132575989, 0.013110339641571045, 0.8251144886016846, 0.19340401887893677, 0.5814680457115173, 0.03726029396057129, 0.5726743936538696, 0.20162731409072876, 0.10120874643325806, 0.002001166343688965, 0.6425818800926208, 0.44281965494155884, 0.5180480480194092, 0.3110988140106201, 0.7373967170715332, 0.019234776496887207, 0.2376226782798767, 0.22389191389083862, 0.47730642557144165, 0.3699323534965515, 0.13452965021133423, 0.002763688564300537, 0.015418529510498047, 0.6051345467567444, 0.03749406337738037, 0.6364832520484924, 0.5089517831802368, 0.22224831581115723, 0.5039854645729065, 0.10209739208221436, 0.023714780807495117, 0.8954068422317505, 0.28351080417633057, 0.5322328805923462, 0.9761161804199219, 0.8987415432929993, 0.3620767593383789, 0.0014836788177490234, 0.0427972674369812, 0.0034590959548950195, 0.33236098289489746, 0.4539473056793213, 0.052282869815826416, 0.08722609281539917, 0.20749646425247192, 0.5907489657402039, 0.05658245086669922, 0.03218942880630493, 0.004132091999053955, 0.6309679746627808, 0.04790860414505005, 0.14676791429519653, 0.35496342182159424, 0.19579344987869263, 0.07147836685180664, 0.10170143842697144, 0.00594019889831543, 0.20903480052947998, 0.07768338918685913, 0.1337299942970276, 0.03306388854980469, 0.00016456842422485352, 0.1486186981201172, 0.017614006996154785, 0.917495846748352, 0.0004920363426208496, 0.12399739027023315, 0.07058513164520264, 0.3310096263885498, 0.07313966751098633, 0.36210882663726807, 0.07449996471405029, 0.07760965824127197, 0.48320385813713074, 0.2326553463935852, 0.4855603873729706, 0.0005932450294494629, 0.33075273036956787, 0.09974968433380127, 0.3873482346534729, 0.1558571457862854, 0.034211695194244385, 0.0263521671295166, 0.2175452709197998, 0.01050412654876709, 0.05775874853134155, 0.41788870096206665, 0.5043261647224426, 0.8785445094108582, 0.06461310386657715, 0.01069486141204834, 0.0948212742805481, 0.06864631175994873, 0.1652403473854065, 0.008568525314331055, 0.23061245679855347, 0.06839603185653687, 0.05866116285324097, 0.5160409212112427, 0.02384573221206665, 0.32412463426589966, 0.6758331060409546, 0.27168983221054077, 0.6287932395935059, 0.07232838869094849, 0.0036426782608032227, 0.12842732667922974, 0.0548136830329895, 0.0639612078666687, 0.00026160478591918945, 0.000261843204498291, 0.05311143398284912, 0.1146230697631836, 0.6930747032165527, 0.4700220227241516, 0.04125398397445679, 0.5410000085830688, 0.012122690677642822, 0.17171138525009155, 0.46375951170921326, 0.055552124977111816, 0.1659284234046936, 0.5736921429634094, 0.5895020961761475, 0.21938729286193848, 0.7748403549194336, 0.09905707836151123, 0.12089741230010986, 0.12669682502746582, 0.9537391662597656, 0.42931675910949707, 0.11984807252883911, 0.35116446018218994, 0.00976574420928955, 0.5, 0.007993936538696289, 0.367365300655365, 0.12231719493865967, 0.4016263484954834, 0.07297784090042114, 0.48506876826286316, 0.0067209601402282715, 0.0011289119720458984, 0.1800774335861206, 0.4652611017227173, 0.4635339379310608, 0.08434504270553589, 0.0035483241081237793, 0.10999822616577148, 0.0008078217506408691, 0.3339809775352478, 0.07524627447128296, 0.2213713526725769, 0.02243119478225708, 0.08137577772140503, 0.4792393743991852, 0.0008040666580200195, 0.73696368932724, 0.18473267555236816, 0.14334863424301147, 0.00017708539962768555, 0.04870516061782837, 0.5119919776916504, 0.06022924184799194, 0.21691083908081055, 0.037498295307159424, 0.5871298909187317, 0.5927237868309021, 0.06748253107070923, 0.14168709516525269, 0.05965554714202881, 0.024477720260620117, 0.13169151544570923, 0.9803075790405273, 0.2433677315711975, 0.6424524784088135, 0.0021056532859802246, 0.10978960990905762, 0.9509477615356445, 0.0647774338722229, 0.1483844518661499, 0.7941625714302063, 0.3180873990058899, 0.4733872413635254, 0.05745494365692139, 0.08194488286972046, 0.5082352161407471, 0.2548205852508545, 0.901533305644989, 0.32665348052978516, 0.09202837944030762, 0.4523738622665405, 0.3433458209037781, 0.00017249584197998047, 0.5223032832145691, 0.5211344361305237, 0.5638790130615234, 0.08828151226043701, 0.596254289150238, 0.24274522066116333, 0.46669381856918335, 0.05637568235397339, 0.22933173179626465, 0.031097233295440674, 0.5889849662780762, 0.0032386183738708496, 0.01760643720626831, 0.02730703353881836, 0.1905994415283203, 0.39350050687789917, 0.22647684812545776, 0.4791853725910187, 0.2164289355278015, 0.49289941787719727, 0.5104331970214844, 0.9742239713668823, 0.26900285482406616, 0.20434802770614624, 0.38319408893585205, 0.00537186861038208, 0.5463703870773315, 0.08760356903076172, 0.30689215660095215, 0.052062928676605225, 0.006942272186279297, 0.2742695212364197, 0.08755314350128174, 0.11918765306472778, 0.08255445957183838, 0.48961055278778076, 0.06338667869567871, 0.03214782476425171, 0.24412286281585693, 0.23537850379943848, 0.05245727300643921, 0.48868048191070557, 0.014250636100769043, 0.45110583305358887, 0.06024515628814697, 0.0753679871559143, 0.1630292534828186, 0.009528696537017822, 0.23977601528167725], "klass": [["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"]], "pred_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"], "correct_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"]}}
|
result/data_april14_DFDC.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["bqdjzqhcft.mp4", "cttqtsjvgn.mp4", "aytzyidmgs.mp4", "arlmiizoob.mp4", "aevrfsexku.mp4", "ddepeddixj.mp4", "abofeumbvv.mp4", "avfitoutyn.mp4", "altziddtxi.mp4", "diopzaywor.mp4", "epymyyiblu.mp4", "cfxkpiweqt.mp4", "eajlrktemq.mp4", "dkhlttuvmx.mp4", "ehccixxzoe.mp4", "dakiztgtnw.mp4", "cdyakrxkia.mp4", "avvdgsennp.mp4", "clihsshdkq.mp4", "cknyxaqouy.mp4", "dqzreruvje.mp4", "caifxvsozs.mp4", "cwsbspfzck.mp4", "bkvetcojbt.mp4", "bwuwstvsbw.mp4", "ceymbecxnj.mp4", "cqhngvpgyi.mp4", "cgvrgibpfo.mp4", "dafhtipaml.mp4", "dptbnjnkdg.mp4", "eczrseixwq.mp4", "dtocdfbwca.mp4", "cmbzllswnl.mp4", "degpbqvcay.mp4", "eejswgycjc.mp4", "akzbnazxtz.mp4", "bulkxhhknf.mp4", "bqkdbcqjvb.mp4", "cwqlvzefpg.mp4", "dtbpmdqvao.mp4", "aelfnikyqj.mp4", "dkuayagnmc.mp4", "cobjrlugvp.mp4", "dlpoieqvfb.mp4", "dbzcqmxzaj.mp4", "erlvuvjsjf.mp4", "bqeiblbxtl.mp4", "ebebgmtlcu.mp4", "dzwkmcwkwl.mp4", "arrhsnjqku.mp4", "drcyabprvt.mp4", "eqjscdagiv.mp4", "bqnymlsayl.mp4", "cyboodqqyr.mp4", "errocgcham.mp4", "cxfujlvsuw.mp4", "cwwandrkus.mp4", "esckbnkkvb.mp4", "btiysiskpf.mp4", "abqwwspghj.mp4", "bmehkyanbj.mp4", "aknmpoonls.mp4", "eukvucdetx.mp4", "aufmsmnoye.mp4", "dbtbbhakdv.mp4", "dvumqqhoac.mp4", "cuzrgrbvil.mp4", "dhevettufk.mp4", "apogckdfrz.mp4", "bghphrsfxf.mp4", "edyncaijwx.mp4", "eivxffliio.mp4", "cyclgfjdrv.mp4", "ejkqesyvam.mp4", "cqrskwiqng.mp4", "dnyvfblxpm.mp4", "benmsfzfaz.mp4", "ayqvfdhslr.mp4", "aknbdpmgua.mp4", "ecujsjhscd.mp4", "dhcndnuwta.mp4", "ehevsxtecd.mp4", "alvgwypubw.mp4", "aklqzsddfl.mp4", "bopqhhalml.mp4", "ddhfabwpuz.mp4", "dhcselezer.mp4", "btjlfpzbdu.mp4", "dqppxmoqdl.mp4", "btunxncpjh.mp4", "chviwxsfhg.mp4", "dzyuwjkjui.mp4", "eggbjzxnmg.mp4", "dzieklokdr.mp4", "ekhacizpah.mp4", "beboztfcme.mp4", "brvqtabyxj.mp4", "btmsngnqhv.mp4", "cepxysienc.mp4", "eprybmbpba.mp4", "dkwjwbwgey.mp4", "ehieahnhte.mp4", "apatcsqejh.mp4", "aslsvlvpth.mp4", "dbnygxtwek.mp4", "ddjggcasdw.mp4", "azpuxunqyo.mp4", "bbhpvrmbse.mp4", "bweezhfpzp.mp4", "bxzakyopjf.mp4", "cvaksbpssm.mp4", "ecwaxgutkc.mp4", "awukslzjra.mp4", "bnbuonyoje.mp4", "byyqectxqa.mp4", "duvyaxbzvp.mp4", "bsqgziaylx.mp4", "asaxgevnnp.mp4", "arkroixhey.mp4", "axczxisdtb.mp4", "cferslmfwh.mp4", "beyebyhrph.mp4", "bmbbkwmxqj.mp4", "czfunozvwp.mp4", "afoovlsmtx.mp4", "bqtuuwzdtr.mp4", "btjwbtsgln.mp4", "bhaaboftbc.mp4", "bilnggbxgu.mp4", "dbhoxkblzx.mp4", "acifjvzvpm.mp4", "ddqccgmtka.mp4", "duzuusuajr.mp4", "dboxtiehng.mp4", "dxbqjxrhin.mp4", "dgxrqjdomn.mp4", "aapnvogymq.mp4", "bjsmaqefoi.mp4", "efdyrflcpg.mp4", "adohikbdaz.mp4", "ajwpjhrbcv.mp4", "bndybcqhfr.mp4", "ebkzwjgjhq.mp4", "atyntldecu.mp4", "agqphdxmwt.mp4", "eoewqcpbgt.mp4", "etejaapnxh.mp4", "bguwlyazau.mp4", "chtapglbcj.mp4", "avywawptfc.mp4", "diuzrpqjli.mp4", "dozyddhild.mp4", "cksanfsjhc.mp4", "djvutyvaio.mp4", "dkzvdrzcnr.mp4", "dzvyfiarrq.mp4", "ecnihjlfyt.mp4", "emfbhytfhc.mp4", "crktehraph.mp4", "cdphtzqrvp.mp4", "djxdyjopjd.mp4", "drgjzlxzxj.mp4", "elvvackpjh.mp4", "bdbhekrrwo.mp4", "dfbpceeaox.mp4", "aagfhgtpmv.mp4", "bhbdugnurr.mp4", "ckjaibzfxa.mp4", "abarnvbtwb.mp4", "avibnnhwhp.mp4", "awhmfnnjih.mp4", "bmioepcpsx.mp4", "eudeqjhdfd.mp4", "bmjzrlszhi.mp4", "bydaidkpdp.mp4", "axntxmycwd.mp4", "aorjvbyxhw.mp4", "adylbeequz.mp4", "asdpeebotb.mp4", "atvmxvwyns.mp4", "bpxckdzddv.mp4", "dgzklxjmix.mp4", "cdaxixbosp.mp4", "bdnaqemxmr.mp4", "bwhlgysghg.mp4", "cxttmymlbn.mp4", "ekkdjkirzq.mp4", "aelzhcnwgf.mp4", "dsgpbgsrdm.mp4", "efwfxwwlbw.mp4", "eqnoqyfquo.mp4", "crezycjqyk.mp4", "eiriyukqqy.mp4", "etmcruaihe.mp4", "dxuplhwvig.mp4", "cnilkgvfei.mp4", "axwgcsyphv.mp4", "byunigvnay.mp4", "bpwzipqtxf.mp4", "esyhwdfnxs.mp4", "btohlidmru.mp4", "bgvhtpzknn.mp4", "byfenovjnf.mp4", "bzythlfnhq.mp4", "cpjxareypw.mp4", "deyyistcrd.mp4", "czmqpxrqoh.mp4", "drtbksnpol.mp4", "asmpfjfzif.mp4", "blzydqdfem.mp4", "dulanfulol.mp4", "bdgipnyobr.mp4", "dvakowbgbt.mp4", "aettqgevhz.mp4", "dqnyszdong.mp4", "bchnbulevv.mp4", "atzdznmder.mp4", "crzfebnfgb.mp4", "cwrtyzndpx.mp4", "etdcqxabww.mp4", "bjjbwsqjir.mp4", "azsmewqghg.mp4", "bqhtpqmmqp.mp4", "czkdanyadc.mp4", "cfyduhpbps.mp4", "erqgqacbqe.mp4", "dgmevclvzy.mp4", "bjkmjilrxp.mp4", "akvmwkdyuv.mp4", "augtsuxpzc.mp4", "esxrvsgpvb.mp4", "alaijyygdv.mp4", "eekozbeafq.mp4", "cmxcfkrjiv.mp4", "dcuiiorugd.mp4", "adhsbajydo.mp4", "dsjbknkujw.mp4", "byofowlkki.mp4", "avssvvsdhz.mp4", "eebserckhh.mp4", "bggsurpgpr.mp4", "alninxcyhg.mp4", "awnwkrqibf.mp4", "avgiuextiz.mp4", "bsfmwclnqy.mp4", "btxlttbpkj.mp4", "bmjmjmbglm.mp4", "cglxirfaey.mp4", "ddpvuimigj.mp4", "ahqqqilsxt.mp4", "bffwsjxghk.mp4", "eeyhxisdfh.mp4", "dxuliowugt.mp4", "agdkmztvby.mp4", "axoygtekut.mp4", "eebrkicpry.mp4", "chzieimrwu.mp4", "drsakwyvqv.mp4", "ehtdtkmmli.mp4", "byijojkdba.mp4", "bntlodcfeg.mp4", "etohcvnzbj.mp4", "dlrsbscitn.mp4", "clrycekyst.mp4", "cxrfacemmq.mp4", "egbbcxcuqy.mp4", "ahdbuwqxit.mp4", "bkmdzhfzfh.mp4", "bourlmzsio.mp4", "dkdwxmtpuo.mp4", "aczrgyricp.mp4", "bgmlwsoamc.mp4", "axwovszumc.mp4", "acxnxvbsxk.mp4", "bejhvclboh.mp4", "bofqajtwve.mp4", "bddjdhzfze.mp4", "bvgwelbeof.mp4", "ctpqeykqdp.mp4", "deywhkarol.mp4", "dhoqofwoxa.mp4", "akxoopqjqz.mp4", "andaxzscny.mp4", "dntkzzzcdh.mp4", "bzmdrafeex.mp4", "cppdvdejkc.mp4", "diomeixhrg.mp4", "coadfnerlk.mp4", "eahlqmfvtj.mp4", "ciyoudyhly.mp4", "cycacemkmt.mp4", "ccfoszqabv.mp4", "cyxlcuyznd.mp4", "bpapbctoao.mp4", "dwediigjit.mp4", "doanjploai.mp4", "dofusvhnib.mp4", "boovltmuwi.mp4", "dbhrpizyeq.mp4", "agrmhtjdlk.mp4", "djvtbgwdcc.mp4", "esnntzzajv.mp4", "aqpnvjhuzw.mp4", "atxvxouljq.mp4", "bdxuhamuqx.mp4", "aipfdnwpoo.mp4", "dhjmzhrcav.mp4", "bnjcdrfuov.mp4", "cizlkenljw.mp4", "cqfugiqupm.mp4", "avnqydkqjj.mp4", "bgwmmujlmc.mp4", "curpwogllm.mp4", "ckbdwedgmc.mp4", "ccmonzqfrz.mp4", "dbzpcjntve.mp4", "btugrnoton.mp4", "byqzyxifza.mp4", "bmhvktyiwp.mp4", "ckkuyewywx.mp4", "bhsluedavd.mp4", "eiwopxzjfn.mp4", "dhkwmjxwrn.mp4", "bahdpoesir.mp4", "ellavthztb.mp4", "dsdoseflas.mp4", "dptrzdvwpg.mp4", "atkdltyyen.mp4", "dqqtjcryjv.mp4", "cettndmvzl.mp4", "duycddgtrl.mp4", "dzqwgqewhu.mp4", "amowujxmzc.mp4", "ensyyivobf.mp4", "ahfazfbntc.mp4", "brwrlczjvi.mp4", "ehbnclaukr.mp4", "avmjormvsx.mp4", "dnexlwbcxq.mp4", "eepezmygaq.mp4", "ctzmavwror.mp4", "dqswpjoepo.mp4", "cprhtltsjp.mp4", "bqqpbzjgup.mp4", "ahbweevwpv.mp4", "dubiroskqn.mp4", "ecuvtoltue.mp4", "bseamdrpbj.mp4", "ajqslcypsw.mp4", "dkrvorliqc.mp4", "ebywfrmhtd.mp4", "avtycwsgyb.mp4", "emgjphonqb.mp4", "esyrimvzsa.mp4", "cbltdtxglo.mp4", "aybgughjxh.mp4", "caqbrkogkb.mp4", "eixwxvxbbn.mp4", "ehfiekigla.mp4", "eckvhdusax.mp4", "amaivqofda.mp4", "diqraixiov.mp4", "cbbibzcoih.mp4", "bkwxhglwct.mp4", "ekcrtigpab.mp4", "bgaogsjehq.mp4", "dnhvalzvrt.mp4", "esgftaficx.mp4", "bhpwpydzpo.mp4", "cdbsbdymzd.mp4", "dhxctgyoqj.mp4", "aneclqfpbt.mp4", "dakqwktlbi.mp4", "ebeknhudxq.mp4", "ebchwmwayp.mp4", "dsndhujjjb.mp4", "anpuvshzoo.mp4", "brhalypwoo.mp4", "ehdkmxgtxh.mp4", "eqvuznuwsa.mp4", "aladcziidp.mp4", "bbhtdfuqxq.mp4", "covdcysmbi.mp4", "asvcrfdpnq.mp4", "dcamvmuors.mp4", "acqfdwsrhi.mp4", "blpchvmhxx.mp4", "emaalmsonj.mp4", "bbvgxeczei.mp4", "bwipwzzxxu.mp4", "egghxjjmfg.mp4", "acxwigylke.mp4", "cwbacdwrzo.mp4", "bctvsmddgq.mp4", "cffffbcywc.mp4", "aybumesmpk.mp4", "bvzjkezkms.mp4", "cthdnahrkh.mp4", "apgjqzkoma.mp4", "elginszwtk.mp4"], "pred": [0.996049165725708, 0.9303967356681824, 0.04097092151641846, 0.9997736811637878, 0.8351556658744812, 0.01100015640258789, 0.5, 0.9995641708374023, 0.9999238848686218, 0.9999053478240967, 0.9995412230491638, 0.01159203052520752, 0.9941105842590332, 0.5, 0.23980188369750977, 0.0007495284080505371, 0.5, 0.5, 0.999904990196228, 0.9997631907463074, 0.9999798536300659, 0.1868600845336914, 0.9835029244422913, 0.9813989996910095, 0.9999184608459473, 0.9985512495040894, 0.9989099502563477, 0.9956477284431458, 0.7367646098136902, 0.6725881695747375, 0.9887211918830872, 0.9995837211608887, 0.04313051700592041, 0.7289818525314331, 0.9991757273674011, 0.8874602317810059, 0.005806684494018555, 0.5, 0.5, 0.9972866773605347, 0.0015430450439453125, 0.047649085521698, 0.03868508338928223, 0.014773428440093994, 0.9999035000801086, 0.009514868259429932, 0.9999449253082275, 0.9994075298309326, 0.999101996421814, 0.9996488094329834, 0.057740628719329834, 0.9998791217803955, 0.9316831827163696, 0.9998888373374939, 0.9999438524246216, 0.9998430609703064, 0.9999439120292664, 0.8740382194519043, 0.9999638795852661, 0.9996379613876343, 0.9860612154006958, 0.998909056186676, 0.9999111294746399, 0.9999627470970154, 0.010605692863464355, 0.9995704889297485, 0.9982137680053711, 0.9875952005386353, 0.9997726678848267, 0.9996223449707031, 0.13225972652435303, 0.9998726844787598, 0.9998371601104736, 0.9944904446601868, 0.9999645352363586, 0.9994822144508362, 0.9759429693222046, 0.9925971627235413, 0.9810421466827393, 0.0004705190658569336, 0.07196784019470215, 0.9991201758384705, 0.9999834299087524, 0.9993250966072083, 0.9997191429138184, 0.9998244643211365, 0.9679515361785889, 0.9931546449661255, 0.7632640600204468, 0.7337821125984192, 0.14121979475021362, 0.027934491634368896, 0.07519006729125977, 0.7451900839805603, 0.9650158286094666, 0.001953721046447754, 0.9999622702598572, 0.9999774694442749, 0.9885343313217163, 0.9990391135215759, 0.9998390674591064, 0.8150458931922913, 0.7381488680839539, 0.9957661628723145, 0.008457422256469727, 0.9485133290290833, 0.9999565482139587, 0.8540483713150024, 0.9996598362922668, 0.10544967651367188, 0.9952712655067444, 0.6895678639411926, 0.9999471306800842, 0.8696429133415222, 0.988160252571106, 0.9964925646781921, 0.5000993013381958, 0.00041103363037109375, 0.9997057914733887, 0.999157190322876, 0.49011391401290894, 0.06354320049285889, 0.887673556804657, 0.7363511919975281, 0.015741169452667236, 0.9986363053321838, 0.9999651312828064, 0.7391961812973022, 0.04329049587249756, 0.9999452233314514, 0.9835548400878906, 0.9890756607055664, 0.9991231560707092, 0.9711064100265503, 0.11592954397201538, 0.9997103214263916, 0.7444829940795898, 0.9999563097953796, 0.9992573261260986, 0.9994687438011169, 0.9999478459358215, 0.8974534273147583, 0.9916715621948242, 0.9963730573654175, 0.9962700605392456, 0.5, 0.9999607801437378, 0.5184223651885986, 0.1387057900428772, 0.9988016486167908, 0.685123860836029, 0.9994909763336182, 0.9999461770057678, 0.5, 0.01891082525253296, 0.7616808414459229, 0.9881811141967773, 0.9916871786117554, 0.9998164176940918, 0.993869423866272, 0.0740925669670105, 0.9965721368789673, 0.9999561905860901, 0.9999518394470215, 0.9998563528060913, 0.9294162392616272, 0.9999616146087646, 0.02105128765106201, 0.00069427490234375, 0.7473480701446533, 0.999973475933075, 0.9526512026786804, 0.19267690181732178, 0.0003491640090942383, 0.9982152581214905, 0.002304553985595703, 0.9692386984825134, 0.9999683499336243, 0.9999867677688599, 0.5, 0.9999274015426636, 0.9635540246963501, 0.860281229019165, 0.01620548963546753, 0.00550466775894165, 0.9136499762535095, 0.8375513553619385, 0.9999719262123108, 0.9947052597999573, 0.01942288875579834, 0.0452425479888916, 0.0015822052955627441, 0.9999480247497559, 0.9995903968811035, 0.9752476811408997, 0.9971605539321899, 0.5, 0.9994955062866211, 0.7858392596244812, 0.5, 0.9617496132850647, 0.05902045965194702, 0.8641421794891357, 0.0005273818969726562, 0.03681141138076782, 0.9996786117553711, 0.5, 0.9983562231063843, 0.9999253153800964, 0.9983157515525818, 0.990323543548584, 0.6738431453704834, 0.9737181663513184, 0.9999410510063171, 0.5, 0.9251078367233276, 0.9933308362960815, 0.9966012239456177, 0.9989776015281677, 0.6746715307235718, 0.975037157535553, 0.8131001591682434, 0.9994322061538696, 0.9978350400924683, 0.9999845623970032, 0.9999155402183533, 0.9999450445175171, 0.9999692440032959, 0.9999409317970276, 0.9536359310150146, 0.9739052057266235, 0.9986198544502258, 0.6749523878097534, 0.6172726154327393, 0.8243889808654785, 0.5, 0.05614358186721802, 0.9561864137649536, 0.9938400983810425, 0.9999483823776245, 0.9947161674499512, 0.9999089241027832, 0.9402222037315369, 0.9294715523719788, 0.9999603033065796, 0.9606056809425354, 0.8830916285514832, 0.9999326467514038, 0.9901086091995239, 0.002377331256866455, 0.0025995373725891113, 0.97712242603302, 0.8826204538345337, 0.9902176856994629, 0.9848535060882568, 0.9998641014099121, 0.9996103644371033, 0.9802877306938171, 0.019558191299438477, 0.985441267490387, 0.9982651472091675, 0.9999302625656128, 0.6205282211303711, 0.005817294120788574, 0.9995414018630981, 0.9987343549728394, 0.9989753365516663, 0.9999568462371826, 0.9549756646156311, 0.9941123127937317, 0.9996014833450317, 0.3241405487060547, 0.8654088377952576, 0.9999522566795349, 0.006805002689361572, 0.9997859001159668, 0.0002995133399963379, 0.94221031665802, 0.9999238848686218, 0.990953266620636, 0.5, 0.9929304122924805, 0.5, 0.999904453754425, 0.4967494606971741, 0.0024970173835754395, 0.9752552509307861, 0.9995936155319214, 0.999059796333313, 0.10718679428100586, 0.5, 0.0062209367752075195, 0.002257049083709717, 0.0093764066696167, 0.9999181032180786, 0.9997467994689941, 0.9988099932670593, 0.5412652492523193, 0.998712956905365, 0.2295536994934082, 0.932638943195343, 0.9802274703979492, 0.9994416236877441, 0.9433791041374207, 0.9995340704917908, 0.6017259359359741, 0.9999814033508301, 0.9875968098640442, 0.038549840450286865, 0.9999039173126221, 0.999955952167511, 0.00189894437789917, 0.9519327282905579, 0.9375981688499451, 0.999887228012085, 0.9998840093612671, 0.9993541836738586, 0.9999149441719055, 0.9846013188362122, 0.16766703128814697, 0.994978666305542, 0.9053344130516052, 0.7622538805007935, 0.990816056728363, 0.00038933753967285156, 0.9991679191589355, 0.99869304895401, 0.00024050474166870117, 0.9875993132591248, 0.9995228052139282, 0.008747994899749756, 0.9999722838401794, 0.9996347427368164, 0.5131263136863708, 0.9998458027839661, 0.014073967933654785, 0.9989580512046814, 0.01148688793182373, 0.9999727010726929, 0.9353885650634766, 0.9291960597038269, 0.8978137969970703, 0.0008568763732910156, 0.90003502368927, 0.9079684615135193, 0.9999840259552002, 0.999971866607666, 0.7374624609947205, 0.0038184523582458496, 0.8894175887107849, 0.9993427991867065, 0.9998902678489685, 0.6497886776924133, 0.999839186668396, 0.8888646960258484, 0.0009525418281555176, 0.9729024171829224, 0.9993199110031128, 0.9996400475502014, 0.0014113783836364746, 0.9999369978904724, 0.31210052967071533, 0.9965412616729736, 0.9990426898002625, 0.11088216304779053, 0.9813790321350098, 0.9995422959327698, 0.9999765157699585, 0.9902548789978027, 0.9999764561653137, 0.11437350511550903, 0.9999715089797974, 0.9998171925544739, 0.5, 0.7463883757591248, 0.9999484419822693, 0.06422603130340576, 0.47630661725997925, 0.9458633661270142, 0.9479293823242188, 0.9991300106048584, 0.8568000793457031, 0.9996321797370911, 0.9964450597763062, 0.9928709268569946, 0.9997397661209106, 0.9998317956924438, 0.9991068243980408, 0.5, 0.004941880702972412, 0.0053863525390625, 0.9997317790985107, 0.9746308326721191, 0.8547589778900146, 0.6422008275985718, 0.0016683340072631836, 0.8612804412841797, 0.9672849774360657, 0.9859920740127563, 0.8254151344299316], "klass": ["dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc"], "pred_label": ["FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE"], "correct_label": ["FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE"]}}
|
result/data_april14_FF++.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["950_836_neuralTextures.mp4", "951_947_neuralTextures.mp4", "952_882_neuralTextures.mp4", "953_974_neuralTextures.mp4", "954_976_neuralTextures.mp4", "955_078_neuralTextures.mp4", "956_958_neuralTextures.mp4", "957_959_neuralTextures.mp4", "958_956_neuralTextures.mp4", "959_957_neuralTextures.mp4", "960_999_neuralTextures.mp4", "961_069_neuralTextures.mp4", "962_929_neuralTextures.mp4", "963_879_neuralTextures.mp4", "964_174_neuralTextures.mp4", "965_948_neuralTextures.mp4", "966_988_neuralTextures.mp4", "967_984_neuralTextures.mp4", "968_884_neuralTextures.mp4", "969_897_neuralTextures.mp4", "970_973_neuralTextures.mp4", "971_564_neuralTextures.mp4", "972_718_neuralTextures.mp4", "973_970_neuralTextures.mp4", "974_953_neuralTextures.mp4", "975_978_neuralTextures.mp4", "976_954_neuralTextures.mp4", "977_075_neuralTextures.mp4", "978_975_neuralTextures.mp4", "979_875_neuralTextures.mp4", "980_992_neuralTextures.mp4", "981_985_neuralTextures.mp4", "982_004_neuralTextures.mp4", "983_113_neuralTextures.mp4", "984_967_neuralTextures.mp4", "985_981_neuralTextures.mp4", "986_994_neuralTextures.mp4", "987_938_neuralTextures.mp4", "988_966_neuralTextures.mp4", "989_993_neuralTextures.mp4", "990_008_neuralTextures.mp4", "991_064_neuralTextures.mp4", "992_980_neuralTextures.mp4", "993_989_neuralTextures.mp4", "994_986_neuralTextures.mp4", "995_233_neuralTextures.mp4", "996_056_neuralTextures.mp4", "997_040_neuralTextures.mp4", "998_561_neuralTextures.mp4", "999_960_neuralTextures.mp4", "950_836_face2Face.mp4", "951_947_face2Face.mp4", "952_882_face2Face.mp4", "953_974_face2Face.mp4", "954_976_face2Face.mp4", "955_078_face2Face.mp4", "956_958_face2Face.mp4", "957_959_face2Face.mp4", "958_956_face2Face.mp4", "959_957_face2Face.mp4", "960_999_face2Face.mp4", "961_069_face2Face.mp4", "962_929_face2Face.mp4", "963_879_face2Face.mp4", "964_174_face2Face.mp4", "965_948_face2Face.mp4", "966_988_face2Face.mp4", "967_984_face2Face.mp4", "968_884_face2Face.mp4", "969_897_face2Face.mp4", "970_973_face2Face.mp4", "971_564_face2Face.mp4", "972_718_face2Face.mp4", "973_970_face2Face.mp4", "974_953_face2Face.mp4", "975_978_face2Face.mp4", "976_954_face2Face.mp4", "977_075_face2Face.mp4", "978_975_face2Face.mp4", "979_875_face2Face.mp4", "980_992_face2Face.mp4", "981_985_face2Face.mp4", "982_004_face2Face.mp4", "983_113_face2Face.mp4", "984_967_face2Face.mp4", "985_981_face2Face.mp4", "986_994_face2Face.mp4", "987_938_face2Face.mp4", "988_966_face2Face.mp4", "989_993_face2Face.mp4", "990_008_face2Face.mp4", "991_064_face2Face.mp4", "992_980_face2Face.mp4", "993_989_face2Face.mp4", "994_986_face2Face.mp4", "995_233_face2Face.mp4", "996_056_face2Face.mp4", "997_040_face2Face.mp4", "998_561_face2Face.mp4", "999_960_face2Face.mp4", "249_280c23_deepfakes.mp4", "296_293c23_deepfakes.mp4", "513_305c23_deepfakes.mp4", "950_836c23_deepfakes.mp4", "951_947c23_deepfakes.mp4", "952_882c23_deepfakes.mp4", "953_974c23_deepfakes.mp4", "954_976c23_deepfakes.mp4", "955_078c23_deepfakes.mp4", "956_958c23_deepfakes.mp4", "957_959c23_deepfakes.mp4", "958_956c23_deepfakes.mp4", "959_957c23_deepfakes.mp4", "960_999c23_deepfakes.mp4", "961_069c23_deepfakes.mp4", "962_929c23_deepfakes.mp4", "963_879c23_deepfakes.mp4", "964_174c23_deepfakes.mp4", "965_948c23_deepfakes.mp4", "966_988c23_deepfakes.mp4", "967_984c23_deepfakes.mp4", "968_884c23_deepfakes.mp4", "969_897c23_deepfakes.mp4", "970_973c23_deepfakes.mp4", "971_564c23_deepfakes.mp4", "972_718c23_deepfakes.mp4", "973_970c23_deepfakes.mp4", "974_953c23_deepfakes.mp4", "975_978c23_deepfakes.mp4", "976_954c23_deepfakes.mp4", "977_075c23_deepfakes.mp4", "978_975c23_deepfakes.mp4", "979_875c23_deepfakes.mp4", "980_992c23_deepfakes.mp4", "981_985c23_deepfakes.mp4", "982_004c23_deepfakes.mp4", "983_113c23_deepfakes.mp4", "984_967c23_deepfakes.mp4", "985_981c23_deepfakes.mp4", "986_994c23_deepfakes.mp4", "987_938c23_deepfakes.mp4", "988_966c23_deepfakes.mp4", "989_993c23_deepfakes.mp4", "990_008c23_deepfakes.mp4", "991_064c23_deepfakes.mp4", "992_980c23_deepfakes.mp4", "993_989c23_deepfakes.mp4", "994_986c23_deepfakes.mp4", "995_233c23_deepfakes.mp4", "996_056c23_deepfakes.mp4", "997_040c23_deepfakes.mp4", "998_561c23_deepfakes.mp4", "999_960c23_deepfakes.mp4", "950_836c40_Deepfakes.mp4", "951_947c40_Deepfakes.mp4", "952_882c40_Deepfakes.mp4", "953_974c40_Deepfakes.mp4", "954_976c40_Deepfakes.mp4", "955_078c40_Deepfakes.mp4", "956_958c40_Deepfakes.mp4", "957_959c40_Deepfakes.mp4", "958_956c40_Deepfakes.mp4", "959_957c40_Deepfakes.mp4", "960_999c40_Deepfakes.mp4", "961_069c40_Deepfakes.mp4", "962_929c40_Deepfakes.mp4", "963_879c40_Deepfakes.mp4", "964_174c40_Deepfakes.mp4", "965_948c40_Deepfakes.mp4", "966_988c40_Deepfakes.mp4", "967_984c40_Deepfakes.mp4", "968_884c40_Deepfakes.mp4", "969_897c40_Deepfakes.mp4", "970_973c40_Deepfakes.mp4", "971_564c40_Deepfakes.mp4", "972_718c40_Deepfakes.mp4", "973_970c40_Deepfakes.mp4", "974_953c40_Deepfakes.mp4", "975_978c40_Deepfakes.mp4", "976_954c40_Deepfakes.mp4", "977_075c40_Deepfakes.mp4", "978_975c40_Deepfakes.mp4", "979_875c40_Deepfakes.mp4", "980_992c40_Deepfakes.mp4", "981_985c40_Deepfakes.mp4", "982_004c40_Deepfakes.mp4", "983_113c40_Deepfakes.mp4", "984_967c40_Deepfakes.mp4", "985_981c40_Deepfakes.mp4", "986_994c40_Deepfakes.mp4", "987_938c40_Deepfakes.mp4", "988_966c40_Deepfakes.mp4", "989_993c40_Deepfakes.mp4", "990_008c40_Deepfakes.mp4", "991_064c40_Deepfakes.mp4", "992_980c40_Deepfakes.mp4", "993_989c40_Deepfakes.mp4", "994_986c40_Deepfakes.mp4", "995_233c40_Deepfakes.mp4", "996_056c40_Deepfakes.mp4", "997_040c40_Deepfakes.mp4", "998_561c40_Deepfakes.mp4", "999_960c40_Deepfakes.mp4", "01__exit_phone_room_actors_c23.mp4", "01__hugging_happy_actors_c23.mp4", "01__kitchen_pan_actors_c23.mp4", "01__kitchen_still_actors_c23.mp4", "01__meeting_serious_actors_c23.mp4", "01__outside_talking_pan_laughing_actors_c23.mp4", "01__outside_talking_still_laughing_actors_c23.mp4", "01__podium_speech_happy_actors_c23.mp4", "01__secret_conversation_actors_c23.mp4", "01__talking_against_wall_actors_c23.mp4", "01__talking_angry_couch_actors_c23.mp4", "01__walking_and_outside_surprised_actors_c23.mp4", "01__walking_down_indoor_hall_disgust_actors_c23.mp4", "01__walking_down_street_outside_angry_actors_c23.mp4", "01__walking_outside_cafe_disgusted_actors_c23.mp4", "01__walk_down_hall_angry_actors_c23.mp4", "02__exit_phone_room_actors_c23.mp4", "02__hugging_happy_actors_c23.mp4", "02__kitchen_pan_actors_c23.mp4", "02__kitchen_still_actors_c23.mp4", "02__meeting_serious_actors_c23.mp4", "02__outside_talking_pan_laughing_actors_c23.mp4", "02__outside_talking_still_laughing_actors_c23.mp4", "02__podium_speech_happy_actors_c23.mp4", "02__secret_conversation_actors_c23.mp4", "02__talking_against_wall_actors_c23.mp4", "02__talking_angry_couch_actors_c23.mp4", "02__walking_and_outside_surprised_actors_c23.mp4", "02__walking_down_indoor_hall_disgust_actors_c23.mp4", "02__walking_down_street_outside_angry_actors_c23.mp4", "02__walking_outside_cafe_disgusted_actors_c23.mp4", "02__walk_down_hall_angry_actors_c23.mp4", "03__exit_phone_room_actors_c23.mp4", "03__hugging_happy_actors_c23.mp4", "03__kitchen_pan_actors_c23.mp4", "03__kitchen_still_actors_c23.mp4", "03__meeting_serious_actors_c23.mp4", "03__outside_talking_pan_laughing_actors_c23.mp4", "03__outside_talking_still_laughing_actors_c23.mp4", "03__podium_speech_happy_actors_c23.mp4", "03__secret_conversation_actors_c23.mp4", "03__talking_against_wall_actors_c23.mp4", "03__talking_angry_couch_actors_c23.mp4", "03__walking_and_outside_surprised_actors_c23.mp4", "03__walking_down_indoor_hall_disgust_actors_c23.mp4", "03__walking_down_street_outside_angry_actors_c23.mp4", "03__walking_outside_cafe_disgusted_actors_c23.mp4", "03__walk_down_hall_angry_actors_c23.mp4", "04__exit_phone_room_actors_c23.mp4", "04__kitchen_pan_actors_c23.mp4", "04__kitchen_still_actors_c23.mp4", "04__outside_talking_pan_laughing_actors_c23.mp4", "04__outside_talking_still_laughing_actors_c23.mp4", "04__podium_speech_happy_actors_c23.mp4", "04__secret_conversation_actors_c23.mp4", "04__talking_against_wall_actors_c23.mp4", "04__talking_angry_couch_actors_c23.mp4", "04__walking_down_street_outside_angry_actors_c23.mp4", "04__walking_outside_cafe_disgusted_actors_c23.mp4", "04__walk_down_hall_angry_actors_c23.mp4", "05__exit_phone_room_actors_c23.mp4", "05__hugging_happy_actors_c23.mp4", "05__kitchen_pan_actors_c23.mp4", "05__kitchen_still_actors_c23.mp4", "05__outside_talking_pan_laughing_actors_c23.mp4", "05__outside_talking_still_laughing_actors_c23.mp4", "05__podium_speech_happy_actors_c23.mp4", "05__talking_against_wall_actors_c23.mp4", "05__walking_down_street_outside_angry_actors_c23.mp4", "05__walking_outside_cafe_disgusted_actors_c23.mp4", "05__walk_down_hall_angry_actors_c23.mp4", "06__exit_phone_room_actors_c23.mp4", "06__hugging_happy_actors_c23.mp4", "06__kitchen_pan_actors_c23.mp4", "06__kitchen_still_actors_c23.mp4", "06__outside_talking_pan_laughing_actors_c23.mp4", "06__outside_talking_still_laughing_actors_c23.mp4", "06__podium_speech_happy_actors_c23.mp4", "06__talking_against_wall_actors_c23.mp4", "06__talking_angry_couch_actors_c23.mp4", "06__walking_and_outside_surprised_actors_c23.mp4", "06__walking_down_indoor_hall_disgust_actors_c23.mp4", "06__walking_down_street_outside_angry_actors_c23.mp4", "06__walking_outside_cafe_disgusted_actors_c23.mp4", "06__walk_down_hall_angry_actors_c23.mp4", "07__exit_phone_room_actors_c23.mp4", "07__hugging_happy_actors_c23.mp4", "07__kitchen_pan_actors_c23.mp4", "07__kitchen_still_actors_c23.mp4", "07__outside_talking_pan_laughing_actors_c23.mp4", "07__outside_talking_still_laughing_actors_c23.mp4", "07__podium_speech_happy_actors_c23.mp4", "07__secret_conversation_actors_c23.mp4", "07__talking_against_wall_actors_c23.mp4", "07__talking_angry_couch_actors_c23.mp4", "07__walking_down_street_outside_angry_actors_c23.mp4", "07__walking_outside_cafe_disgusted_actors_c23.mp4", "07__walk_down_hall_angry_actors_c23.mp4", "08__exit_phone_room_actors_c23.mp4", "08__kitchen_pan_actors_c23.mp4", "08__kitchen_still_actors_c23.mp4", "08__outside_talking_pan_laughing_actors_c23.mp4", "08__outside_talking_still_laughing_actors_c23.mp4", "08__podium_speech_happy_actors_c23.mp4", "08__talking_against_wall_actors_c23.mp4", "08__walking_down_street_outside_angry_actors_c23.mp4", "08__walking_outside_cafe_disgusted_actors_c23.mp4", "08__walk_down_hall_angry_actors_c23.mp4", "09__exit_phone_room_actors_c23.mp4", "09__kitchen_pan_actors_c23.mp4", "09__outside_talking_pan_laughing_actors_c23.mp4", "09__outside_talking_still_laughing_actors_c23.mp4", "09__podium_speech_happy_actors_c23.mp4", "09__talking_against_wall_actors_c23.mp4", "09__talking_angry_couch_actors_c23.mp4", "09__walking_down_street_outside_angry_actors_c23.mp4", "09__walk_down_hall_angry_actors_c23.mp4", "10__exit_phone_room_actors_c23.mp4", "10__kitchen_pan_actors_c23.mp4", "10__kitchen_still_actors_c23.mp4", "10__outside_talking_pan_laughing_actors_c23.mp4", "10__outside_talking_still_laughing_actors_c23.mp4", "10__podium_speech_happy_actors_c23.mp4", "10__talking_against_wall_actors_c23.mp4", "10__talking_angry_couch_actors_c23.mp4", "10__walking_down_street_outside_angry_actors_c23.mp4", "10__walking_outside_cafe_disgusted_actors_c23.mp4", "10__walk_down_hall_angry_actors_c23.mp4", "11__exit_phone_room_actors_c23.mp4", "11__kitchen_pan_actors_c23.mp4", "11__kitchen_still_actors_c23.mp4", "11__outside_talking_pan_laughing_actors_c23.mp4", "11__outside_talking_still_laughing_actors_c23.mp4", "11__podium_speech_happy_actors_c23.mp4", "11__secret_conversation_actors_c23.mp4", "11__talking_against_wall_actors_c23.mp4", "11__talking_angry_couch_actors_c23.mp4", "11__walking_down_street_outside_angry_actors_c23.mp4", "11__walking_outside_cafe_disgusted_actors_c23.mp4", "11__walk_down_hall_angry_actors_c23.mp4", "12__exit_phone_room_actors_c23.mp4", "12__hugging_happy_actors_c23.mp4", "12__kitchen_pan_actors_c23.mp4", "12__kitchen_still_actors_c23.mp4", "12__outside_talking_pan_laughing_actors_c23.mp4", "12__outside_talking_still_laughing_actors_c23.mp4", "12__podium_speech_happy_actors_c23.mp4", "12__secret_conversation_actors_c23.mp4", "12__talking_against_wall_actors_c23.mp4", "12__talking_angry_couch_actors_c23.mp4", "12__walking_and_outside_surprised_actors_c23.mp4", "12__walking_down_indoor_hall_disgust_actors_c23.mp4", "12__walking_down_street_outside_angry_actors_c23.mp4", "12__walking_outside_cafe_disgusted_actors_c23.mp4", "12__walk_down_hall_angry_actors_c23.mp4", "13__exit_phone_room_actors_c23.mp4", "13__hugging_happy_actors_c23.mp4", "13__kitchen_pan_actors_c23.mp4", "13__kitchen_still_actors_c23.mp4", "13__outside_talking_pan_laughing_actors_c23.mp4", "13__outside_talking_still_laughing_actors_c23.mp4", "13__podium_speech_happy_actors_c23.mp4", "13__secret_conversation_actors_c23.mp4", "13__talking_against_wall_actors_c23.mp4", "13__talking_angry_couch_actors_c23.mp4", "13__walking_and_outside_surprised_actors_c23.mp4", "13__walking_down_indoor_hall_disgust_actors_c23.mp4", "13__walking_down_street_outside_angry_actors_c23.mp4", "13__walking_outside_cafe_disgusted_actors_c23.mp4", "13__walk_down_hall_angry_actors_c23.mp4", "14__exit_phone_room_actors_c23.mp4", "14__hugging_happy_actors_c23.mp4", "14__kitchen_pan_actors_c23.mp4", "14__kitchen_still_actors_c23.mp4", "14__outside_talking_pan_laughing_actors_c23.mp4", "14__outside_talking_still_laughing_actors_c23.mp4", "14__podium_speech_happy_actors_c23.mp4", "14__secret_conversation_actors_c23.mp4", "14__talking_against_wall_actors_c23.mp4", "14__talking_angry_couch_actors_c23.mp4", "14__walking_and_outside_surprised_actors_c23.mp4", "14__walking_down_indoor_hall_disgust_actors_c23.mp4", "14__walking_down_street_outside_angry_actors_c23.mp4", "14__walking_outside_cafe_disgusted_actors_c23.mp4", "14__walk_down_hall_angry_actors_c23.mp4", "15__exit_phone_room_actors_c23.mp4", "15__hugging_happy_actors_c23.mp4", "15__kitchen_pan_actors_c23.mp4", "15__kitchen_still_actors_c23.mp4", "15__outside_talking_pan_laughing_actors_c23.mp4", "15__outside_talking_still_laughing_actors_c23.mp4", "15__podium_speech_happy_actors_c23.mp4", "15__talking_against_wall_actors_c23.mp4", "15__talking_angry_couch_actors_c23.mp4", "15__walking_and_outside_surprised_actors_c23.mp4", "15__walking_down_indoor_hall_disgust_actors_c23.mp4", "15__walking_down_street_outside_angry_actors_c23.mp4", "15__walking_outside_cafe_disgusted_actors_c23.mp4", "15__walk_down_hall_angry_actors_c23.mp4", "16__exit_phone_room_actors_c23.mp4", "16__hugging_happy_actors_c23.mp4", "16__kitchen_pan_actors_c23.mp4", "16__kitchen_still_actors_c23.mp4", "16__outside_talking_pan_laughing_actors_c23.mp4"], "pred": [0.9943609237670898, 0.5921189188957214, 0.9335203766822815, 0.8039353489875793, 0.984056830406189, 0.9989997148513794, 0.9568749666213989, 0.7357391715049744, 0.982063889503479, 0.9657002091407776, 0.9737181067466736, 0.998354971408844, 0.8942556977272034, 0.9976786375045776, 0.9656146168708801, 0.8390328288078308, 0.8169578909873962, 0.9961206316947937, 0.8363555073738098, 0.9040819406509399, 0.8560516834259033, 0.8990632891654968, 0.7919091582298279, 0.9597905278205872, 0.705342710018158, 0.9673974514007568, 0.8815049529075623, 0.9812279343605042, 0.6289432048797607, 0.9831722974777222, 0.9535337686538696, 0.9577608108520508, 0.8025110960006714, 0.9897889494895935, 0.9193478226661682, 0.6808089017868042, 0.3939366340637207, 0.945522665977478, 0.9370115995407104, 0.9461434483528137, 0.9806830883026123, 0.9856723546981812, 0.6479164958000183, 0.6015295386314392, 0.7966610193252563, 0.8185258507728577, 0.9298452734947205, 0.9103887677192688, 0.9768124222755432, 0.9400331974029541, 0.9994767308235168, 0.9302098155021667, 0.9939788579940796, 0.938230574131012, 0.9930195212364197, 0.9950811266899109, 0.9946146011352539, 0.9132095575332642, 0.9988301992416382, 0.955040693283081, 0.9989851713180542, 0.9996030926704407, 0.8612854480743408, 0.9983441829681396, 0.9994216561317444, 0.7576549053192139, 0.5426172614097595, 0.9984403848648071, 0.9481873512268066, 0.9778437614440918, 0.9705941677093506, 0.9725875854492188, 0.9429699182510376, 0.9981470704078674, 0.8299161195755005, 0.9965057969093323, 0.9453507661819458, 0.7888616323471069, 0.9623425006866455, 0.9929193258285522, 0.9059736132621765, 0.9929598569869995, 0.9723411798477173, 0.9951927065849304, 0.9678564071655273, 0.6707952618598938, 0.9845043420791626, 0.8113741278648376, 0.9950497150421143, 0.8872966170310974, 0.9529008269309998, 0.9912424683570862, 0.8893976807594299, 0.9700141549110413, 0.5537957549095154, 0.9380443692207336, 0.8261258602142334, 0.9266881346702576, 0.9974356889724731, 0.9989307522773743, 0.9988292455673218, 0.999776303768158, 0.9971598982810974, 0.9997763633728027, 0.937477707862854, 0.9997556209564209, 0.954366147518158, 0.9990226030349731, 0.9940057992935181, 0.9722423553466797, 0.9781336188316345, 0.9795548915863037, 0.9422211647033691, 0.9991476535797119, 0.999494731426239, 0.9997459650039673, 0.9979143738746643, 0.9866925477981567, 0.9999150633811951, 0.9782446026802063, 0.9998287558555603, 0.9999569654464722, 0.998254656791687, 0.9992339611053467, 0.9942104816436768, 0.9998461008071899, 0.9998152256011963, 0.9996094703674316, 0.9998514652252197, 0.9866496324539185, 0.9985568523406982, 0.9996292591094971, 0.9892376661300659, 0.9525488018989563, 0.9997690916061401, 0.9993038177490234, 0.9991632103919983, 0.9996105432510376, 0.5984604358673096, 0.9986860156059265, 0.9994487762451172, 0.9982313513755798, 0.8036597967147827, 0.9518953561782837, 0.9968377351760864, 0.9548873901367188, 0.9983587265014648, 0.666999876499176, 0.8815102577209473, 0.9343752861022949, 0.9884647727012634, 0.9744327664375305, 0.981774628162384, 0.9996699690818787, 0.9765924215316772, 0.9926505088806152, 0.7797335982322693, 0.9438348412513733, 0.994994580745697, 0.9640167355537415, 0.9914782047271729, 0.8722764253616333, 0.7266359329223633, 0.9230562448501587, 0.9966104626655579, 0.9719846844673157, 0.9671654105186462, 0.966516375541687, 0.9951052069664001, 0.9754520058631897, 0.9918431639671326, 0.9856405258178711, 0.9823632836341858, 0.9647096395492554, 0.9712957739830017, 0.9949309825897217, 0.9990411996841431, 0.9632108807563782, 0.9272968769073486, 0.6246618032455444, 0.9800553917884827, 0.5735284090042114, 0.7326717376708984, 0.4190341830253601, 0.9375623464584351, 0.8328757286071777, 0.9953901767730713, 0.8536649346351624, 0.14948028326034546, 0.7484521865844727, 0.9205170273780823, 0.8048402667045593, 0.5400291681289673, 0.9453384876251221, 0.865383505821228, 0.706731379032135, 0.911914050579071, 0.71852707862854, 0.5465624332427979, 0.5247630476951599, 0.9030174612998962, 0.8293036222457886, 0.6683678030967712, 0.07950437068939209, 0.21818625926971436, 0.050279438495635986, 0.005856990814208984, 0.22479963302612305, 0.3318389654159546, 0.1415550708770752, 0.023397982120513916, 0.07615715265274048, 0.0025010108947753906, 0.06619232892990112, 0.4532749652862549, 0.4982439875602722, 0.138874351978302, 0.16926389932632446, 0.1647183895111084, 0.1662311553955078, 0.1883794069290161, 0.13704556226730347, 0.043771445751190186, 0.3851645588874817, 0.1522933840751648, 0.06353557109832764, 0.14250028133392334, 0.13533353805541992, 0.003689408302307129, 0.022334158420562744, 0.4526470899581909, 0.4264645576477051, 0.18880122900009155, 0.13261842727661133, 0.21020734310150146, 0.17731523513793945, 0.017346560955047607, 0.0021255016326904297, 0.11735963821411133, 0.11683285236358643, 0.04380983114242554, 0.0400506854057312, 0.019602060317993164, 0.25878220796585083, 0.002970099449157715, 0.008260667324066162, 0.3882771134376526, 0.514937162399292, 0.2015392780303955, 0.09944283962249756, 0.12256741523742676, 0.07417047023773193, 0.020689010620117188, 0.1396515965461731, 0.06269341707229614, 0.015414297580718994, 0.023624897003173828, 0.13099610805511475, 0.0021340250968933105, 0.048123955726623535, 0.06486111879348755, 0.1076500415802002, 0.10185843706130981, 0.02676403522491455, 0.008487105369567871, 0.005716919898986816, 0.009746372699737549, 0.014046669006347656, 0.007323503494262695, 0.03222334384918213, 0.02969491481781006, 0.04620927572250366, 0.10015010833740234, 0.09594941139221191, 0.0703919529914856, 0.030676662921905518, 0.023229897022247314, 0.03296858072280884, 0.062461018562316895, 0.06494081020355225, 0.17812645435333252, 0.007824897766113281, 0.09266364574432373, 0.42231011390686035, 0.46105724573135376, 0.12996166944503784, 0.10501962900161743, 0.1308308243751526, 0.08760344982147217, 0.10546731948852539, 0.08782941102981567, 0.04224109649658203, 0.07955116033554077, 0.134884774684906, 0.18957394361495972, 0.3988879919052124, 0.013678967952728271, 0.09145617485046387, 0.15998834371566772, 0.25810593366622925, 0.13420510292053223, 0.1384197473526001, 0.013064205646514893, 0.061266958713531494, 0.0027331113815307617, 0.025754332542419434, 0.07045012712478638, 0.01301109790802002, 0.10447925329208374, 0.05465531349182129, 0.24938207864761353, 0.045589327812194824, 0.012356579303741455, 0.08013570308685303, 0.02746981382369995, 0.017060518264770508, 0.009088695049285889, 0.001343846321105957, 0.012781023979187012, 0.10933083295822144, 0.06636595726013184, 0.040084898471832275, 0.05021333694458008, 0.20010018348693848, 0.09923034906387329, 0.10645675659179688, 0.0166204571723938, 0.03958386182785034, 0.06383359432220459, 0.09405416250228882, 0.14029580354690552, 0.05792039632797241, 0.013698816299438477, 0.01322239637374878, 0.10210061073303223, 0.14902186393737793, 0.04726320505142212, 0.12868493795394897, 0.01848071813583374, 0.010843336582183838, 0.048589229583740234, 0.06165468692779541, 0.01431262493133545, 0.04563504457473755, 0.15860849618911743, 0.023232698440551758, 0.016608476638793945, 0.0411260724067688, 0.02153635025024414, 0.06194251775741577, 0.16120803356170654, 0.08199375867843628, 0.002141237258911133, 0.644788920879364, 0.662222683429718, 0.058695435523986816, 0.009723544120788574, 0.061341702938079834, 0.046251893043518066, 0.14684975147247314, 0.08680981397628784, 0.05763643980026245, 0.08916568756103516, 0.06609630584716797, 0.03749287128448486, 0.003136157989501953, 0.08848822116851807, 0.012343645095825195, 0.6459218263626099, 0.6620135307312012, 0.044684648513793945, 0.0382729172706604, 0.10952925682067871, 0.23823243379592896, 0.1728765368461609, 0.05990922451019287, 0.04130619764328003, 0.011523723602294922, 0.06104910373687744, 0.32677167654037476, 0.04150199890136719, 0.010961532592773438, 0.2169056534767151, 0.5135046243667603, 0.7178708910942078, 0.11383378505706787, 0.0511699914932251, 0.17837846279144287, 0.1010814905166626, 0.09880167245864868, 0.037601351737976074, 0.10187333822250366, 0.10135406255722046, 0.04943877458572388, 0.286909282207489, 0.1085439920425415, 0.2165292501449585, 0.5518009066581726, 0.6852800250053406, 0.21552562713623047, 0.07747340202331543, 0.184423565864563, 0.040261149406433105, 0.11740881204605103, 0.12248975038528442, 0.049288392066955566, 0.24701541662216187], "klass": ["neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original"], "pred_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"], "correct_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"]}}
|
result/prediction_other_genconvit_March_07_2025_22_14_13.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["0045.mp4.mp4"], "pred": [0.5602145195007324], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_07_2025_23_28_59.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["0017_fake.mp4.mp4"], "pred": [0.9963172674179077], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_07_2025_23_33_10.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["0017_fake.mp4.mp4"], "pred": [0.9963205456733704], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_07_2025_23_37_00.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["0017_fake.mp4.mp4"], "pred": [0.9963181614875793], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_07_2025_23_55_27.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["sample_1.mp4"], "pred": [0.9996999502182007], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_07_2025_23_59_40.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["sample_1.mp4"], "pred": [0.9997004270553589], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_08_2025_00_03_44.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["sample_1.mp4"], "pred": [0.9997005462646484], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_08_2025_00_10_00.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["sample_1.mp4"], "pred": [0.999701976776123], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_08_2025_00_18_09.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["anndvqgoko.mp4"], "pred": [0.05888557434082031], "klass": ["uncategorized"], "pred_label": ["REAL"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_08_2025_00_21_11.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["anndvqgoko.mp4"], "pred": [0.05888569355010986], "klass": ["uncategorized"], "pred_label": ["REAL"], "correct_label": ["unknown"]}}
|
result/prediction_other_genconvit_March_08_2025_01_18_40.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video": {"name": ["anndvqgoko.mp4"], "pred": [0.058885395526885986], "klass": ["uncategorized"], "pred_label": ["REAL"], "correct_label": ["unknown"]}}
|
result_all.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from sklearn.metrics import roc_curve, roc_auc_score, f1_score
|
5 |
+
|
6 |
+
json_files = [
|
7 |
+
os.path.join("result", "data_april14_Celeb-DF.json"),
|
8 |
+
os.path.join("result", "data_april14_DFDC.json"),
|
9 |
+
os.path.join("result", "data_april11_DeepfakeTIMIT.json"),
|
10 |
+
os.path.join("result", "data_april14_FF++.json"),
|
11 |
+
]
|
12 |
+
|
13 |
+
# Lists to store the ROC curve data
|
14 |
+
fpr_list = []
|
15 |
+
tpr_list = []
|
16 |
+
roc_auc_list = []
|
17 |
+
|
18 |
+
for json_file in json_files:
|
19 |
+
with open(json_file, "r") as f:
|
20 |
+
result = json.load(f)
|
21 |
+
|
22 |
+
# Get the actual labels and predicted probabilities or predicted labels from the result dictionary
|
23 |
+
actual_labels = result["video"]["correct_label"]
|
24 |
+
predicted_probs = result["video"]["pred"]
|
25 |
+
predicted_labels = result["video"]["pred_label"]
|
26 |
+
|
27 |
+
big_pp = [1 if P >= 0.5 else 0 for P in predicted_probs]
|
28 |
+
p_labels = [1 if label == "FAKE" else 0 for label in predicted_labels]
|
29 |
+
a_labels = [1 if label == "FAKE" else 0 for label in actual_labels]
|
30 |
+
|
31 |
+
# Calculate ROC curve and AUC
|
32 |
+
fpr, tpr, thresholds = roc_curve(a_labels, predicted_probs)
|
33 |
+
roc_auc = roc_auc_score(a_labels, predicted_probs)
|
34 |
+
f1 = f1_score(a_labels, big_pp)
|
35 |
+
|
36 |
+
# Append the data to the lists
|
37 |
+
fpr_list.append(fpr)
|
38 |
+
tpr_list.append(tpr)
|
39 |
+
roc_auc_list.append(roc_auc)
|
40 |
+
|
41 |
+
a = 0
|
42 |
+
for i in range(len(p_labels)):
|
43 |
+
if p_labels[i] == a_labels[i]:
|
44 |
+
a += 1
|
45 |
+
|
46 |
+
accuracy = sum(x == y for x, y in zip(p_labels, a_labels)) / len(p_labels)
|
47 |
+
real_acc = sum(
|
48 |
+
(x == y and y == 0) for x, y in zip(p_labels, a_labels)
|
49 |
+
) / a_labels.count(0)
|
50 |
+
fake_acc = sum(
|
51 |
+
(x == y and y == 1) for x, y in zip(p_labels, a_labels)
|
52 |
+
) / a_labels.count(1)
|
53 |
+
print(
|
54 |
+
f"{(json_file[:-5].split('_')[-1])}:\nReal accuracy {real_acc*100:.3f} Fake accuracy {fake_acc*100:.3f}, Accuracy: {accuracy*100:.3f}"
|
55 |
+
)
|
56 |
+
print(f"ROC AUC: {roc_auc:.3f}")
|
57 |
+
print(f"F1 Score: {f1:.3f}\n")
|
58 |
+
|
59 |
+
# Plot ROC curves
|
60 |
+
plt.figure()
|
61 |
+
for i in range(len(json_files)):
|
62 |
+
plt.plot(
|
63 |
+
fpr_list[i],
|
64 |
+
tpr_list[i],
|
65 |
+
label=f"{json_files[i][:-5].split('_')[-1]} (area = %0.3f)" % roc_auc_list[i],
|
66 |
+
)
|
67 |
+
|
68 |
+
plt.plot([0, 1], [0, 1], "k--")
|
69 |
+
plt.xlim([0.0, 1.0])
|
70 |
+
plt.ylim([0.0, 1.05])
|
71 |
+
plt.xlabel("False Positive Rate")
|
72 |
+
plt.ylabel("True Positive Rate")
|
73 |
+
plt.title("Receiver Operating Characteristic (ROC) Curve")
|
74 |
+
plt.legend(loc="lower right")
|
75 |
+
plt.show()
|