File size: 6,791 Bytes
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87b2569
39e92a8
cc50ae5
 
 
 
 
edc23a6
 
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9809882
 
 
 
 
 
 
 
 
 
a6977ca
 
 
 
 
 
 
 
 
 
9809882
 
 
 
a6977ca
 
 
cc50ae5
 
9809882
cc50ae5
9809882
 
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9809882
 
cc50ae5
 
 
9809882
cc50ae5
9809882
 
cc50ae5
a6977ca
 
 
cc50ae5
9809882
 
cc50ae5
 
 
9809882
 
 
 
 
 
 
 
 
cc50ae5
4181fbb
cc50ae5
4181fbb
9809882
 
cc50ae5
42e7535
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import torch
import os
import spaces
import uuid

from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image

# Constants
bases = {
    "Cartoon": "frankjoshua/toonyou_beta6",
    "Realistic": "emilianJR/epiCRealism",
    "3d": "Lykon/DreamShaper",
    "Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None

# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
    raise NotImplementedError("No GPU detected!")

device = "cuda"
dtype = torch.float16
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# Safety checkers
from transformers import CLIPFeatureExtractor

feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")

# Function 
@spaces.GPU(duration=60,queue=False)
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
    global step_loaded
    global base_loaded
    global motion_loaded
    print(prompt, base, step)

    step = int(step)

    if step_loaded != step:
        repo = "ByteDance/AnimateDiff-Lightning"
        ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
        pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
        step_loaded = step

    if base_loaded != base:
        pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
        base_loaded = base

    if motion_loaded != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])
        motion_loaded = motion

    progress((0, step))
    def progress_callback(i, t, z):
        progress((i+1, step))

    output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1)

    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    export_to_video(output.frames[0], path, fps=10)
    return path

# Gradio Interface
css = """
    body {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f4f4f9; color: #333;}
    h1 {color: #333; text-align: center; margin-bottom: 20px;}
    .gradio-container {max-width: 800px; margin: auto; padding: 20px; background: #fff; box-shadow: 0px 0px 20px rgba(0,0,0,0.1); border-radius: 10px;}
    .gr-input {margin-bottom: 15px;}
    .gr-button {width: 100%; background-color: #4CAF50; color: white; border: none; padding: 10px 20px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; border-radius: 5px; cursor: pointer; transition: background-color 0.3s;}
    .gr-button:hover {background-color: #45a049;}
    .gr-video {margin-top: 20px;}
    .gr-examples {margin-top: 30px;}
    .gr-examples .gr-example {display: inline-block; width: 100%; text-align: center; padding: 10px; background: #eaeaea; border-radius: 5px; margin-bottom: 10px;}

    .container {display: flex; flex-wrap: wrap;}
    .inputs, .output {padding: 20px;}
    .inputs {flex: 1; min-width: 300px;}
    .output {flex: 1; min-width: 300px;}

    @media (max-width: 768px) {
        .container {flex-direction: column-reverse;}
    }
    .svelte-1ybb3u7, .svelte-1clup3e {display: none !important;}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1>Instant⚡ Text to Video</h1>")
    with gr.Row(elem_id="container"):
        with gr.Column(elem_id="inputs"):
            prompt = gr.Textbox(label='Prompt', placeholder="Enter text to generate video...", elem_id="gr-input")
            select_base = gr.Dropdown(
                label='Base model',
                choices=["Cartoon", "Realistic", "3d", "Anime"],
                value=base_loaded,
                interactive=True,
                elem_id="gr-input"
            )
            select_motion = gr.Dropdown(
                label='Motion',
                choices=[
                    ("Default", ""),
                    ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                    ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                    ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                    ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                    ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                    ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                    ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                    ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                ],
                value="guoyww/animatediff-motion-lora-zoom-in",
                interactive=True,
                elem_id="gr-input"
            )
            select_step = gr.Dropdown(
                label='Inference steps',
                choices=[('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8)],
                value=4,
                interactive=True,
                elem_id="gr-input"
            )
            submit = gr.Button("Generate Video", variant='primary', elem_id="gr-button")
        with gr.Column(elem_id="output"):
            video = gr.Video(label='AnimateDiff-Lightning', autoplay=True, height=512, width=512, elem_id="gr-video")

    prompt.submit(fn=generate_image, inputs=[prompt, select_base, select_motion, select_step], outputs=video)
    submit.click(fn=generate_image, inputs=[prompt, select_base, select_motion, select_step], outputs=video, api_name="instant_video")

    gr.Examples(
        examples=[
            ["Focus: Eiffel Tower (Animate: Clouds moving)"],
            ["Focus: Trees In forest (Animate: Lion running)"],
            ["Focus: Astronaut in Space"],
            ["Focus: Group of Birds in sky (Animate:  Birds Moving) (Shot From distance)"],
            ["Focus:  Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"],
            ["Focus: Panda in Forest (Animate: Drinking Tea)"],
            ["Focus: Kids Playing (Season: Winter)"],
            ["Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)"]
        ],
        fn=generate_image,
        inputs=[prompt],
        outputs=video,
        cache_examples=True,
        elem_id="gr-examples"
    )

demo.queue().launch(show_error=True)