SahithiR commited on
Commit
42b2b5d
·
1 Parent(s): 703bc1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -12
app.py CHANGED
@@ -2,24 +2,19 @@ import torch
2
  import torch.nn as nn
3
  import pytorch_lightning as pl
4
  from torchvision.datasets import MNIST
5
- from torchvision.transforms import ToTensor
6
- from torch.utils.data import DataLoader, random_split
7
  import torch
8
  import albumentations as A
9
  from albumentations.pytorch import ToTensorV2
10
-
11
  from torchvision import transforms
12
  import numpy as np
13
  import torch
14
  from torchvision import datasets
15
- from torch.utils.data import Dataset, DataLoader
16
  from torchvision.transforms import ToTensor
17
  from torchmetrics import Accuracy
18
  from torch.nn import functional as F
19
  import matplotlib.pyplot as plt
20
-
21
  import gradio as gr
22
- import torch
23
  from PIL import Image
24
  from Dataset.testalbumentation import TestAlbumentation
25
  from Model.Lit_cifar_module import LitCifar
@@ -34,16 +29,16 @@ classes = ('plane', 'car', 'bird', 'cat',
34
  global_classes = 5
35
 
36
  def inference(input_image, transparency, target_layer, num_top_classes1, gradcam_image_display = False):
37
- im = input_image
38
  test_transform = TestAlbumentation()
39
- im1 = test_transform(im)
40
- im1 = im1.unsqueeze(0).cpu()
41
- out0 = model(im1)
42
  out = out0.detach().numpy()
43
  confidences = {classes[i] : float(out[0][i]) for i in range(10)}
44
  val = torch.argmax(out0).detach().numpy().tolist()
45
- targ = [val]
46
- input_image_np,visualization=gradcame(net, 0, targ, im1, target_layer, transparency)
47
  return confidences, visualization
48
 
49
  interface = gr.Interface(inference,
 
2
  import torch.nn as nn
3
  import pytorch_lightning as pl
4
  from torchvision.datasets import MNIST
5
+ from torch.utils.data import DataLoader, random_split, Dataset
 
6
  import torch
7
  import albumentations as A
8
  from albumentations.pytorch import ToTensorV2
 
9
  from torchvision import transforms
10
  import numpy as np
11
  import torch
12
  from torchvision import datasets
 
13
  from torchvision.transforms import ToTensor
14
  from torchmetrics import Accuracy
15
  from torch.nn import functional as F
16
  import matplotlib.pyplot as plt
 
17
  import gradio as gr
 
18
  from PIL import Image
19
  from Dataset.testalbumentation import TestAlbumentation
20
  from Model.Lit_cifar_module import LitCifar
 
29
  global_classes = 5
30
 
31
  def inference(input_image, transparency, target_layer, num_top_classes1, gradcam_image_display = False):
32
+ image = input_image
33
  test_transform = TestAlbumentation()
34
+ image1 = test_transform(image)
35
+ image1 = image1.unsqueeze(0).cpu()
36
+ out0 = model(image1)
37
  out = out0.detach().numpy()
38
  confidences = {classes[i] : float(out[0][i]) for i in range(10)}
39
  val = torch.argmax(out0).detach().numpy().tolist()
40
+ target = [val]
41
+ input_image_np,visualization=gradcame(model, 0, target, image1, target_layer, transparency)
42
  return confidences, visualization
43
 
44
  interface = gr.Interface(inference,