Spaces:
Runtime error
Runtime error
Update CUSTOMRESNET.py
Browse files- CUSTOMRESNET.py +9 -13
CUSTOMRESNET.py
CHANGED
@@ -2,11 +2,9 @@ import torch.nn.functional as F
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
|
5 |
-
class
|
6 |
def __init__(self):
|
7 |
-
super(
|
8 |
-
#drop=0.01
|
9 |
-
# Preparation Layer
|
10 |
self.conv1 = nn.Sequential (
|
11 |
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1,bias=False),
|
12 |
nn.BatchNorm2d(64),
|
@@ -57,8 +55,8 @@ class Net(nn.Module):
|
|
57 |
# Fully connected
|
58 |
self.fc = nn.Linear(512, 10, bias=True)
|
59 |
|
60 |
-
|
61 |
def forward(self, x):
|
|
|
62 |
x = self.conv1(x)
|
63 |
|
64 |
x = self.conv11(x)
|
@@ -77,18 +75,16 @@ class Net(nn.Module):
|
|
77 |
#x = x.randn(512, 1)
|
78 |
|
79 |
# squeeze the tensor to size 512x
|
80 |
-
x = x.squeeze(dim=[2, 3])
|
|
|
|
|
|
|
|
|
81 |
|
82 |
#x = x.view(512, 10)
|
83 |
|
84 |
x = self.fc(x)
|
85 |
|
86 |
x = x.view(-1, 10)
|
|
|
87 |
return x
|
88 |
-
#y = F.log_softmax(x, dim=-1)
|
89 |
-
#return y
|
90 |
-
|
91 |
-
def model_summary(model,input_size):
|
92 |
-
model = Net().to(device)
|
93 |
-
summary(model, input_size=(3, 32, 32))
|
94 |
-
return model,input_size
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
|
5 |
+
class MyModel(nn.Module):
|
6 |
def __init__(self):
|
7 |
+
super().__init__()
|
|
|
|
|
8 |
self.conv1 = nn.Sequential (
|
9 |
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1,bias=False),
|
10 |
nn.BatchNorm2d(64),
|
|
|
55 |
# Fully connected
|
56 |
self.fc = nn.Linear(512, 10, bias=True)
|
57 |
|
|
|
58 |
def forward(self, x):
|
59 |
+
#x = x.unsqueeze(0)
|
60 |
x = self.conv1(x)
|
61 |
|
62 |
x = self.conv11(x)
|
|
|
75 |
#x = x.randn(512, 1)
|
76 |
|
77 |
# squeeze the tensor to size 512x
|
78 |
+
#x = x.squeeze(dim=[2, 3])
|
79 |
+
x = x.squeeze(dim=2)
|
80 |
+
x = x.squeeze(dim=2)
|
81 |
+
#x = x.squeeze(dim=2).squeeze(dim=3)
|
82 |
+
#x = x.squeeze(dim=2)
|
83 |
|
84 |
#x = x.view(512, 10)
|
85 |
|
86 |
x = self.fc(x)
|
87 |
|
88 |
x = x.view(-1, 10)
|
89 |
+
x = F.log_softmax(x, dim=-1)
|
90 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|