Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
import requests | |
from PIL import Image | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from models.blip import blip_decoder | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def load_demo_image(image_size, device): | |
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' | |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') | |
w,h = raw_image.size | |
transform = transforms.Compose([ | |
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
image = transform(raw_image).unsqueeze(0).to(device) | |
return image, raw_image.resize((w//5,h//5)) | |
def main(): | |
st.set_page_config(page_title="Image Captioning App") | |
st.title("Image Captioning App") | |
st.write("This app generates captions for images using a pre-trained model.") | |
# Load image | |
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if image_file is not None: | |
image = Image.open(image_file) | |
image_size = 384 | |
transform = transforms.Compose([ | |
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
image = transform(image).unsqueeze(0).to(device) | |
# Generate captions | |
with torch.no_grad(): | |
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' | |
model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base') | |
model.eval() | |
model = model.to(device) | |
num_captions = 3 | |
captions = [] | |
for i in range(num_captions): | |
caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) | |
captions.append(caption[0]) | |
for i, caption in enumerate(captions): | |
st.write(f'Caption {i+1}: {caption}') | |
# Display uploaded image | |
st.image(image_file, caption='Uploaded image', use_column_width=True) | |
if __name__ == "__main__": | |
main() | |