import streamlit as st import torch import requests from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from models.blip import blip_decoder device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') @st.cache(show_spinner=False) def load_demo_image(image_size, device): img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') w,h = raw_image.size transform = transforms.Compose([ transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(raw_image).unsqueeze(0).to(device) return image, raw_image.resize((w//5,h//5)) def main(): st.set_page_config(page_title="Image Captioning App") st.title("Image Captioning App") st.write("This app generates captions for images using a pre-trained model.") # Load image image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if image_file is not None: image = Image.open(image_file) image_size = 384 transform = transforms.Compose([ transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(image).unsqueeze(0).to(device) # Generate captions with torch.no_grad(): model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base') model.eval() model = model.to(device) num_captions = 3 captions = [] for i in range(num_captions): caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) captions.append(caption[0]) for i, caption in enumerate(captions): st.write(f'Caption {i+1}: {caption}') # Display uploaded image st.image(image_file, caption='Uploaded image', use_column_width=True) if __name__ == "__main__": main()