Saibo-backup
commited on
Commit
·
a1aa766
1
Parent(s):
805081b
use smaller repetition penalty; add doc
Browse files
app.py
CHANGED
@@ -42,7 +42,7 @@ if __name__ == "__main__":
|
|
42 |
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
|
43 |
|
44 |
outputs = model.generate(
|
45 |
-
**inputs, max_new_tokens=50, repetition_penalty=1.
|
46 |
)
|
47 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
48 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
@@ -70,19 +70,19 @@ if __name__ == "__main__":
|
|
70 |
with demo:
|
71 |
gr.Markdown(
|
72 |
"""
|
73 |
-
#
|
74 |
-
This is a demo of how you can
|
75 |
-
|
76 |
-
|
77 |
-
Internally, it relies on [`
|
78 |
-
|
79 |
"""
|
80 |
)
|
81 |
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
prompt = gr.Textbox(label="Prompt", lines=3, value="This is a valid json string for http request:")
|
85 |
-
button = gr.Button(f"Generate with {MODEL_NAME}
|
86 |
with gr.Column():
|
87 |
highlighted_text = gr.HighlightedText(
|
88 |
label="Highlighted generation",
|
|
|
42 |
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
|
43 |
|
44 |
outputs = model.generate(
|
45 |
+
**inputs, max_new_tokens=50, repetition_penalty=1.05, return_dict_in_generate=True, output_scores=True, logits_processor=[grammar_processor]
|
46 |
)
|
47 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
48 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
|
|
70 |
with demo:
|
71 |
gr.Markdown(
|
72 |
"""
|
73 |
+
# Grammar-Constrained Decoding with GPT-2
|
74 |
+
This is a demo of how you can constrain the output of a GPT-2 model using a formal grammar.
|
75 |
+
Here we use a simple JSON grammar to constrain the output of the model to be valid JSON strings.
|
76 |
+
The grammar is defined in `json_minimal.ebnf` and is written in the Extended Backus-Naur Form (EBNF).
|
77 |
+
Internally, it relies on the library [`transformers-cfg`](https://github.com/epfl-dlab/transformers-CFG).
|
78 |
+
For demo purpose, gpt2 is used, but you can use much larger models for better performance.
|
79 |
"""
|
80 |
)
|
81 |
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
prompt = gr.Textbox(label="Prompt", lines=3, value="This is a valid json string for http request:")
|
85 |
+
button = gr.Button(f"Generate with json object using {MODEL_NAME}!")
|
86 |
with gr.Column():
|
87 |
highlighted_text = gr.HighlightedText(
|
88 |
label="Highlighted generation",
|