import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import numpy as np from transformers_cfg.grammar_utils import IncrementalGrammarConstraint from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor MODEL_NAME = "gpt2" if __name__ == "__main__": # Define your model and your tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id model.config.pad_token_id = model.config.eos_token_id model.to_bettertransformer() # Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order! probs_to_label = [ (0.1, "p >= 10%"), (0.01, "p >= 1%"), (1e-20, "p < 1%"), ] label_to_color = { "p >= 10%": "green", "p >= 1%": "yellow", "p < 1%": "red" } def get_tokens_and_labels(prompt): """ Given the prompt (text), return a list of tuples (decoded_token, label) """ inputs = tokenizer([prompt], return_tensors="pt") # Load json grammar and create a GrammarConstrainedLogitsProcessor for each call with open("json_minimal.ebnf", "r") as file: grammar_str = file.read() grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer) grammar_processor = GrammarConstrainedLogitsProcessor(grammar) outputs = model.generate( **inputs, max_new_tokens=50, repetition_penalty=1, return_dict_in_generate=True, output_scores=True, logits_processor=[grammar_processor] ) # Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) transition_proba = np.exp(transition_scores) # We only have scores for the generated tokens, so pop out the prompt tokens input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] generated_tokens = outputs.sequences[:, input_length:] # Initialize the highlighted output with the prompt, which will have no color label highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids] # Get the (decoded_token, label) pairs for the generated tokens for token, proba in zip(generated_tokens[0], transition_proba[0]): this_label = None assert 0. <= proba <= 1.0 for min_proba, label in probs_to_label: if proba >= min_proba: this_label = label break highlighted_out.append((tokenizer.decode(token), this_label)) return highlighted_out demo = gr.Blocks() with demo: gr.Markdown( """ # 👻 Transformers-CFG JSON Demo This is a demo of how you can constrain the output of a GPT-2 model to be a **valid** JSON string(**up to truncation**). Here we use a simple JSON grammar to constrain the output of the model. The grammar is defined in `json_minimal.ebnf` and is written in the **Extended Backus-Naur Form (EBNF)**. Internally, it relies on the library [`transformers-cfg`](https://github.com/epfl-dlab/transformers-CFG). For demo purpose, gpt2 is used, but you can use much larger models for better performance. The inference is a bit slow because of the inference is run on **CPU(~20s for 30 tokens)**. The constraint itself **doesn't** introduce significant overhead to the inference. The output may be **truncated** to 30 tokens due to the limitation of the maximum length of the output. In practice, with a decent `max_length` parameter, your JSON output will be **complete** and **valid**. """ ) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", lines=3, value="This is a valid json string describing a Pokémon character:") button = gr.Button(f"Generate with json object using {MODEL_NAME}!") with gr.Column(): highlighted_text = gr.HighlightedText( label="Highlighted generation", combine_adjacent=True, show_legend=True, ).style(color_map=label_to_color) button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text) if __name__ == "__main__": demo.launch()