|
import gradio as gr |
|
import torch |
|
from huggingface_hub import from_pretrained_fastai |
|
from pathlib import Path |
|
|
|
examples = ["akiec.jpg", |
|
"mel.jpg",] |
|
|
|
|
|
|
|
repo_id = "Saim8250/Skin-Diseases-Classification" |
|
path = Path("./") |
|
|
|
def get_y(r): |
|
return r["label"] |
|
|
|
def get_x(r): |
|
return path/r["fname"] |
|
|
|
learner = from_pretrained_fastai(repo_id) |
|
labels = learner.dls.vocab |
|
|
|
def inference(image): |
|
label_predict,_,probs = learner.predict(image) |
|
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} |
|
return labels_probs |
|
|
|
|
|
|
|
gr.Interface( |
|
fn=inference, |
|
title="Skin Diseases classification", |
|
description = "Predict which type of skin disease", |
|
inputs="image", |
|
examples=examples, |
|
outputs=gr.outputs.Label(num_top_classes=5, label='Prediction'), |
|
cache_examples=False, |
|
ssl_context = create_ssl_context(verify=verify, cert=cert, trust_env=trust_env) |
|
).launch(debug=True, enable_queue=True) |