Saim8250 commited on
Commit
2e9a126
·
1 Parent(s): 8d29acb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -38
app.py CHANGED
@@ -1,43 +1,20 @@
1
  import gradio as gr
2
- import torch
3
- from huggingface_hub import from_pretrained_fastai
4
- from pathlib import Path
5
- import gradio.components as components
6
- from gradio.blocks import Block
7
- from gradio import encryptor, external, networking, queueing, routes, strings, utils
8
- from gradio import components, utils
9
 
 
10
 
11
- examples = ["akiec.jpg",
12
- "mel.jpg",]
13
- # ⚠️ Type of model/library unknown.
14
-
15
-
16
- repo_id = "Saim8250/Skin-Diseases-Classification"
17
- path = Path("./")
18
 
19
- def get_y(r):
20
- return r["label"]
21
-
22
- def get_x(r):
23
- return path/r["fname"]
24
-
25
- learner = from_pretrained_fastai(repo_id)
26
- labels = learner.dls.vocab
27
 
28
- def inference(image):
29
- label_predict,_,probs = learner.predict(image)
30
- labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)}
31
- return labels_probs
32
-
33
-
34
-
35
- gr.Interface(
36
- fn=inference,
37
- title="Skin Diseases classification",
38
- description = "Predict which type of skin disease",
39
- inputs="image",
40
- examples=examples,
41
- outputs=gr.outputs.Label(num_top_classes=5, label='Prediction'),
42
- cache_examples=False,
43
- ).launch(debug=True, enable_queue=False)
 
1
  import gradio as gr
2
+ from fastai.vision.all import *
3
+ import skimage
 
 
 
 
 
4
 
5
+ learn = load_learner('resnett.pkl')
6
 
7
+ labels = learn.dls.vocab
8
+ def predict(img):
9
+ img = PILImage.create(img)
10
+ pred,pred_idx,probs = learn.predict(img)
11
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
 
12
 
13
+ title = "Skin Diseases Classifier"
14
+ #description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
+ #article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
+ #examples = ['siamese.jpg']
17
+ interpretation='default'
18
+ enable_queue=True
 
 
19
 
20
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()