Saim8250 commited on
Commit
49e38df
·
verified ·
1 Parent(s): 75fb042

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ # Use a pipeline as a high-level helper
7
+ pipe = pipeline("mask-generation", model="lightmedsam")
8
+
9
+ def predict(image_path):
10
+ # Perform image segmentation
11
+ predictions = pipe(image_path)
12
+
13
+ # Access the segmented mask or any other relevant information in predictions
14
+ segmented_mask = predictions["segmentation_mask"]
15
+
16
+ # Convert the segmentation mask to an RGB image
17
+ segmented_image = colorize_mask(segmented_mask)
18
+
19
+ return segmented_image
20
+
21
+ def colorize_mask(mask):
22
+ # Assuming `mask` is a single-channel segmentation mask (grayscale)
23
+ # You may need to adjust this function based on the specifics of your model's output
24
+
25
+ # Convert single-channel mask to 3-channel (RGB) mask
26
+ colored_mask = np.zeros((*mask.shape, 3), dtype=np.uint8)
27
+ colored_mask[:, :, 0] = mask
28
+ colored_mask[:, :, 1] = mask
29
+ colored_mask[:, :, 2] = mask
30
+
31
+ return colored_mask
32
+
33
+ gr.Interface(
34
+ predict,
35
+ inputs=gr.Image(label="Upload medical image", type="filepath"),
36
+ outputs=gr.Image(label="Segmented image"),
37
+ title="Segmented medical image",
38
+ allow_flagging="manual"
39
+ ).launch()