Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Use a pipeline as a high-level helper
|
7 |
+
pipe = pipeline("mask-generation", model="lightmedsam")
|
8 |
+
|
9 |
+
def predict(image_path):
|
10 |
+
# Perform image segmentation
|
11 |
+
predictions = pipe(image_path)
|
12 |
+
|
13 |
+
# Access the segmented mask or any other relevant information in predictions
|
14 |
+
segmented_mask = predictions["segmentation_mask"]
|
15 |
+
|
16 |
+
# Convert the segmentation mask to an RGB image
|
17 |
+
segmented_image = colorize_mask(segmented_mask)
|
18 |
+
|
19 |
+
return segmented_image
|
20 |
+
|
21 |
+
def colorize_mask(mask):
|
22 |
+
# Assuming `mask` is a single-channel segmentation mask (grayscale)
|
23 |
+
# You may need to adjust this function based on the specifics of your model's output
|
24 |
+
|
25 |
+
# Convert single-channel mask to 3-channel (RGB) mask
|
26 |
+
colored_mask = np.zeros((*mask.shape, 3), dtype=np.uint8)
|
27 |
+
colored_mask[:, :, 0] = mask
|
28 |
+
colored_mask[:, :, 1] = mask
|
29 |
+
colored_mask[:, :, 2] = mask
|
30 |
+
|
31 |
+
return colored_mask
|
32 |
+
|
33 |
+
gr.Interface(
|
34 |
+
predict,
|
35 |
+
inputs=gr.Image(label="Upload medical image", type="filepath"),
|
36 |
+
outputs=gr.Image(label="Segmented image"),
|
37 |
+
title="Segmented medical image",
|
38 |
+
allow_flagging="manual"
|
39 |
+
).launch()
|