Update src/streamlit_app.py
Browse files- src/streamlit_app.py +2 -2
src/streamlit_app.py
CHANGED
@@ -19,7 +19,7 @@ def uploaded_file(filename):
|
|
19 |
|
20 |
# Load model and tokenizer once
|
21 |
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
|
22 |
-
model_path = "./emotion_final_model"
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
model = BertForSequenceClassification.from_pretrained(model_path).to(device)
|
25 |
model.eval()
|
@@ -103,7 +103,7 @@ def analyze():
|
|
103 |
aspect_summary[aspect]["total"] += 1
|
104 |
|
105 |
# Generate WordCloud
|
106 |
-
wordcloud = WordCloud(width=800, height=400, background_color='white', font_path='urdu_font.ttf').generate(all_text)
|
107 |
|
108 |
# Save in uploads folder
|
109 |
if not os.path.exists("uploads"):
|
|
|
19 |
|
20 |
# Load model and tokenizer once
|
21 |
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
|
22 |
+
model_path = "./src/emotion_final_model"
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
model = BertForSequenceClassification.from_pretrained(model_path).to(device)
|
25 |
model.eval()
|
|
|
103 |
aspect_summary[aspect]["total"] += 1
|
104 |
|
105 |
# Generate WordCloud
|
106 |
+
wordcloud = WordCloud(width=800, height=400, background_color='white', font_path='src/urdu_font.ttf').generate(all_text)
|
107 |
|
108 |
# Save in uploads folder
|
109 |
if not os.path.exists("uploads"):
|