Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import gradio as gr
|
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
# Step 2: Load our AI Model
|
| 6 |
-
# This time, we are using a text-classification pipeline with our chosen health model.
|
| 7 |
print("Loading the Health Analysis model...")
|
| 8 |
health_classifier = pipeline(
|
| 9 |
"text-classification",
|
|
@@ -11,23 +10,39 @@ health_classifier = pipeline(
|
|
| 11 |
)
|
| 12 |
print("Model loaded successfully!")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Step 3: Define the main function for the app
|
| 15 |
-
# This function takes the user's symptom text and returns a formatted prediction.
|
| 16 |
def analyze_symptoms(symptoms):
|
| 17 |
-
# Use the pipeline to get the prediction. It returns a list of dictionaries.
|
| 18 |
predictions = health_classifier(symptoms)
|
| 19 |
-
# For this model, the top prediction is the first item in the list.
|
| 20 |
top_prediction = predictions[0]
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
|
|
|
| 24 |
confidence_score = top_prediction['score']
|
| 25 |
|
| 26 |
-
# Return the results in a clear, readable string.
|
| 27 |
return f"Predicted Condition: {disease}\nConfidence: {confidence_score:.2f}"
|
| 28 |
|
| 29 |
-
# Step 4: Define the content for our app
|
| 30 |
-
# We'll create a title, a detailed description, and a very important disclaimer.
|
| 31 |
app_title = "Symptom to Disease Classifier"
|
| 32 |
app_description = """
|
| 33 |
Enter a list of symptoms, and this AI will predict a possible related medical condition.
|
|
@@ -40,7 +55,7 @@ This is NOT a medical diagnostic tool. The predictions are generated by an AI mo
|
|
| 40 |
This tool should not be used for any real-world medical decision-making.
|
| 41 |
"""
|
| 42 |
|
| 43 |
-
# Step 5: Create and Launch the Gradio Web App Interface
|
| 44 |
app = gr.Interface(
|
| 45 |
fn=analyze_symptoms,
|
| 46 |
inputs=gr.Textbox(
|
|
@@ -50,7 +65,7 @@ app = gr.Interface(
|
|
| 50 |
outputs="text",
|
| 51 |
title=app_title,
|
| 52 |
description=app_description,
|
| 53 |
-
article=disclaimer,
|
| 54 |
examples=[
|
| 55 |
["I have a persistent cough, high fever, and body aches."],
|
| 56 |
["Feeling very thirsty and needing to urinate frequently."],
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
# Step 2: Load our AI Model
|
|
|
|
| 6 |
print("Loading the Health Analysis model...")
|
| 7 |
health_classifier = pipeline(
|
| 8 |
"text-classification",
|
|
|
|
| 10 |
)
|
| 11 |
print("Model loaded successfully!")
|
| 12 |
|
| 13 |
+
# NEW: Step 2.5 - Create the Label Dictionary
|
| 14 |
+
# The model outputs generic names like 'label_0'. This dictionary maps them to real disease names.
|
| 15 |
+
label_map = {
|
| 16 |
+
'label_0': 'Fungal infection', 'label_1': 'Allergy', 'label_2': 'GERD',
|
| 17 |
+
'label_3': 'Chronic cholestasis', 'label_4': 'Drug Reaction', 'label_5': 'Peptic ulcer disease',
|
| 18 |
+
'label_6': 'AIDS', 'label_7': 'Diabetes', 'label_8': 'Gastroenteritis',
|
| 19 |
+
'label_9': 'Bronchial Asthma', 'label_10': 'Hypertension', 'label_11': 'Migraine',
|
| 20 |
+
'label_12': 'Cervical spondylosis', 'label_13': 'Paralysis (brain hemorrhage)',
|
| 21 |
+
'label_14': 'Jaundice', 'label_15': 'Malaria', 'label_16': 'Chicken pox',
|
| 22 |
+
'label_17': 'Dengue', 'label_18': 'Typhoid', 'label_19': 'Hepatitis A',
|
| 23 |
+
'label_20': 'Hepatitis B', 'label_21': 'Hepatitis C', 'label_22': 'Hepatitis D',
|
| 24 |
+
'label_23': 'Hepatitis E', 'label_24': 'Alcoholic hepatitis', 'label_25': 'Tuberculosis',
|
| 25 |
+
'label_26': 'Common Cold', 'label_27': 'Pneumonia', 'label_28': 'Dimorphic hemmorhoids(piles)',
|
| 26 |
+
'label_29': 'Heart attack', 'label_30': 'Varicose veins', 'label_31': 'Hypothyroidism',
|
| 27 |
+
'label_32': 'Hyperthyroidism', 'label_33': 'Hypoglycemia', 'label_34': 'Osteoarthristis',
|
| 28 |
+
'label_35': 'Arthritis', 'label_36': '(vertigo) Paroymsal Positional Vertigo',
|
| 29 |
+
'label_37': 'Acne', 'label_38': 'Urinary tract infection', 'label_39': 'Psoriasis',
|
| 30 |
+
'label_40': 'Impetigo'
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
# Step 3: Define the main function for the app
|
|
|
|
| 34 |
def analyze_symptoms(symptoms):
|
|
|
|
| 35 |
predictions = health_classifier(symptoms)
|
|
|
|
| 36 |
top_prediction = predictions[0]
|
| 37 |
|
| 38 |
+
# MODIFIED: Look up the generic label in our new dictionary
|
| 39 |
+
generic_label = top_prediction['label']
|
| 40 |
+
disease = label_map.get(generic_label, "Unknown Label") # .get() safely handles unknown labels
|
| 41 |
confidence_score = top_prediction['score']
|
| 42 |
|
|
|
|
| 43 |
return f"Predicted Condition: {disease}\nConfidence: {confidence_score:.2f}"
|
| 44 |
|
| 45 |
+
# Step 4: Define the content for our app (No changes here)
|
|
|
|
| 46 |
app_title = "Symptom to Disease Classifier"
|
| 47 |
app_description = """
|
| 48 |
Enter a list of symptoms, and this AI will predict a possible related medical condition.
|
|
|
|
| 55 |
This tool should not be used for any real-world medical decision-making.
|
| 56 |
"""
|
| 57 |
|
| 58 |
+
# Step 5: Create and Launch the Gradio Web App Interface (No changes here)
|
| 59 |
app = gr.Interface(
|
| 60 |
fn=analyze_symptoms,
|
| 61 |
inputs=gr.Textbox(
|
|
|
|
| 65 |
outputs="text",
|
| 66 |
title=app_title,
|
| 67 |
description=app_description,
|
| 68 |
+
article=disclaimer,
|
| 69 |
examples=[
|
| 70 |
["I have a persistent cough, high fever, and body aches."],
|
| 71 |
["Feeling very thirsty and needing to urinate frequently."],
|