Spaces:
Runtime error
Runtime error
import torch | |
from transformers import ViTImageProcessor, AutoFeatureExtractor, AutoModelForImageClassification | |
import gradio as gr | |
image_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") | |
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") | |
model = AutoModelForImageClassification.from_pretrained("saved_model_files") | |
labels = ['angular_leaf_spot', 'bean_rust', 'healthy'] | |
def classify(image): | |
features = image_processor(image, return_tensors='pt') | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
print(confidences) | |
return confidences | |
theme = gr.themes.Soft( | |
primary_hue="green", | |
secondary_hue="green", | |
neutral_hue="green", | |
).set( | |
block_background_fill_dark='*body_background_fill', | |
button_border_width='*block_label_border_width', | |
button_border_width_dark='*checkbox_label_border_width' | |
) | |
with gr.Blocks(theme=theme) as demo: | |
inference = gr.Interface(fn=classify, inputs="image", outputs="label", | |
title="Plant leaves Classification", | |
description="Classify the leaves by uploading image", | |
examples=["images/1.png","images/2.png", "images/3.png"]) | |
demo.launch() |