Spaces:
Runtime error
Runtime error
Commit
·
e3b861a
1
Parent(s):
6b7167b
Update app.py
Browse files
app.py
CHANGED
@@ -10,22 +10,18 @@ from transformers import RobertaModel, AutoTokenizer
|
|
10 |
def load():
|
11 |
text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text')
|
12 |
tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text')
|
13 |
-
|
14 |
image_embeddings = torch.load('embeddings.pt')
|
15 |
-
return text_encoder, tokenizer,
|
16 |
|
17 |
|
18 |
-
text_encoder, tokenizer,
|
19 |
|
20 |
|
21 |
def get_html(url_list, height=224):
|
22 |
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
23 |
-
for url
|
24 |
-
html2 = f"<img style='height: {height}px; margin: 5px' src='{escape(url)}'>"
|
25 |
-
if len(link) > 0:
|
26 |
-
html2 = f"<a href='{escape(link)}' target='_blank'>" + \
|
27 |
-
html2 + "</a>"
|
28 |
-
|
29 |
html = html + html2
|
30 |
html += "</div>"
|
31 |
return html
|
@@ -36,7 +32,7 @@ def image_search(query, top_k=8):
|
|
36 |
with torch.no_grad():
|
37 |
text_embedding = text_encoder(**tokenizer(query, return_tensors='pt')).pooler_output
|
38 |
values, indices = torch.cosine_similarity(text_embedding, image_embeddings).sort(descending=True)
|
39 |
-
return [
|
40 |
|
41 |
|
42 |
description = '''
|
|
|
10 |
def load():
|
11 |
text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text')
|
12 |
tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text')
|
13 |
+
links = np.load('link.npy', allow_pickle=True)
|
14 |
image_embeddings = torch.load('embeddings.pt')
|
15 |
+
return text_encoder, tokenizer, links, image_embeddings
|
16 |
|
17 |
|
18 |
+
text_encoder, tokenizer, links, image_embeddings = load()
|
19 |
|
20 |
|
21 |
def get_html(url_list, height=224):
|
22 |
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
23 |
+
for url in url_list:
|
24 |
+
html2 = f"<img style='height: {height}px; margin: 5px' src='{escape(url)}'>"
|
|
|
|
|
|
|
|
|
25 |
html = html + html2
|
26 |
html += "</div>"
|
27 |
return html
|
|
|
32 |
with torch.no_grad():
|
33 |
text_embedding = text_encoder(**tokenizer(query, return_tensors='pt')).pooler_output
|
34 |
values, indices = torch.cosine_similarity(text_embedding, image_embeddings).sort(descending=True)
|
35 |
+
return [links[i] for i in indices[:top_k]]
|
36 |
|
37 |
|
38 |
description = '''
|