import streamlit as st import pandas as pd import numpy as np from html import escape import os import torch import transformers from transformers import RobertaModel, AutoTokenizer #@st.cache(show_spinner=False) #def load(): # text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text') # image_embeddings = torch.load('embedding.pt') # links = np.load('data.npy', allow_pickle=True) # return text_encoder, links, image_embeddings tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text') text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text').eval() image_embeddings = torch.load('embedding.pt') links = np.load('data.npy', allow_pickle=True) def get_html(url_list, height=180): html = "