import streamlit as st
import numpy as np
from html import escape
import torch
from transformers import RobertaModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text')
text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text').eval()
image_embeddings = torch.load('embedding.pt')
links = np.load('data.npy', allow_pickle=True)
def get_html(url_list):
html = "
"
for url in url_list:
html2 = f"
})
"
html = html + html2
html += "
"
return html
def image_search(query, top_k=8):
with torch.no_grad():
text_embedding = text_encoder(**tokenizer(query, return_tensors='pt')).pooler_output
values, indices = torch.cosine_similarity(text_embedding, image_embeddings).sort(descending=True)
return [links[i] for i in indices[:top_k]]
description = '''
# Semantic image search :)
'''
def main():
st.markdown('''
''',
unsafe_allow_html=True)
st.sidebar.markdown(description)
_, c, _ = st.columns((1, 3, 1))
query = c.text_input('Search text', value='مرغ دریای')
if len(query) > 0:
results = image_search(query)
st.markdown(get_html(results), unsafe_allow_html=True)
if __name__ == '__main__':
main()