import streamlit as st import numpy as np from html import escape import torch from transformers import RobertaModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text') text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text').eval() image_embeddings = torch.load('embedding.pt') links = np.load('data.npy', allow_pickle=True) def get_html(url_list): html = "
" for url in url_list: html2 = f"" html = html + html2 html += "
" return html def image_search(query, top_k=8): with torch.no_grad(): text_embedding = text_encoder(**tokenizer(query, return_tensors='pt')).pooler_output values, indices = torch.cosine_similarity(text_embedding, image_embeddings).sort(descending=True) return [links[i] for i in indices[:top_k]] description = ''' # Semantic image search :) ''' def main(): st.markdown(''' ''', unsafe_allow_html=True) st.sidebar.markdown(description) _, c, _ = st.columns((1, 3, 1)) query = c.text_input('Search text', value='مرغ دریای') if len(query) > 0: results = image_search(query) st.markdown(get_html(results), unsafe_allow_html=True) if __name__ == '__main__': main()