Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -163,6 +163,100 @@
|
|
163 |
|
164 |
# demo.launch()
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
import gradio as gr
|
167 |
import os
|
168 |
import wave
|
@@ -178,6 +272,9 @@ lines = []
|
|
178 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
179 |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-calculator-demo")
|
180 |
|
|
|
|
|
|
|
181 |
# Function to read lines from a file
|
182 |
def read_lines_from_file(file_path):
|
183 |
global lines
|
@@ -209,8 +306,11 @@ def save_to_hf_dataset(text, audio_path):
|
|
209 |
def audio_capture_interface():
|
210 |
global file_index, line_index, lines
|
211 |
|
212 |
-
#
|
213 |
-
files = os.listdir('./audio_samples')
|
|
|
|
|
|
|
214 |
read_lines_from_file(os.path.join('./audio_samples', files[file_index]))
|
215 |
|
216 |
# Define the interface components
|
@@ -238,17 +338,17 @@ def audio_capture_interface():
|
|
238 |
elif button == 'previous':
|
239 |
line_index = max(line_index - 1, 0)
|
240 |
|
241 |
-
|
242 |
|
243 |
# Create the Gradio interface
|
244 |
with gr.Blocks() as iface:
|
245 |
with gr.Row():
|
246 |
-
gr.Textbox(label="Text", value=lines[line_index], interactive=False)
|
247 |
with gr.Row():
|
248 |
audio_input.render()
|
249 |
with gr.Row():
|
250 |
-
gr.Button("Previous").click(lambda: navigate_lines('previous'),
|
251 |
-
gr.Button("Forward").click(lambda: navigate_lines('forward'),
|
252 |
gr.Button("Submit").click(process_audio, inputs=audio_input, outputs=output_text)
|
253 |
|
254 |
return iface
|
@@ -256,4 +356,3 @@ def audio_capture_interface():
|
|
256 |
# Launch the interface
|
257 |
iface = audio_capture_interface()
|
258 |
iface.launch()
|
259 |
-
|
|
|
163 |
|
164 |
# demo.launch()
|
165 |
|
166 |
+
# import gradio as gr
|
167 |
+
# import os
|
168 |
+
# import wave
|
169 |
+
# import tempfile
|
170 |
+
# import numpy as np
|
171 |
+
|
172 |
+
# # Global variables to store file and line index
|
173 |
+
# file_index = 0
|
174 |
+
# line_index = 0
|
175 |
+
# lines = []
|
176 |
+
|
177 |
+
# # Hugging Face token and dataset saver
|
178 |
+
# HF_TOKEN = os.getenv('HF_TOKEN')
|
179 |
+
# hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-calculator-demo")
|
180 |
+
|
181 |
+
# # Function to read lines from a file
|
182 |
+
# def read_lines_from_file(file_path):
|
183 |
+
# global lines
|
184 |
+
# with open(file_path, 'r') as file:
|
185 |
+
# lines = file.readlines()
|
186 |
+
|
187 |
+
# # Function to save audio to a WAV file
|
188 |
+
# def save_audio_to_file(audio):
|
189 |
+
# sample_rate, data = audio # audio is a tuple (sample_rate, data)
|
190 |
+
|
191 |
+
# # Save the audio data as a WAV file in a temporary location
|
192 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
193 |
+
# with wave.open(tmp_file.name, 'wb') as wav_file:
|
194 |
+
# wav_file.setnchannels(1) # Mono audio
|
195 |
+
# wav_file.setsampwidth(2) # 2 bytes per sample (16-bit PCM)
|
196 |
+
# wav_file.setframerate(sample_rate)
|
197 |
+
# wav_file.writeframes(data.tobytes())
|
198 |
+
|
199 |
+
# # Return the path to the saved WAV file
|
200 |
+
# return tmp_file.name
|
201 |
+
|
202 |
+
# # Function to save data to the Hugging Face dataset
|
203 |
+
# def save_to_hf_dataset(text, audio_path):
|
204 |
+
# with open(audio_path, "rb") as f:
|
205 |
+
# audio_data = f.read()
|
206 |
+
# hf_writer.save({"text": text, "audio": audio_data})
|
207 |
+
|
208 |
+
# # Gradio interface function
|
209 |
+
# def audio_capture_interface():
|
210 |
+
# global file_index, line_index, lines
|
211 |
+
|
212 |
+
# # Initial file to read
|
213 |
+
# files = os.listdir('./audio_samples')
|
214 |
+
# read_lines_from_file(os.path.join('./audio_samples', files[file_index]))
|
215 |
+
|
216 |
+
# # Define the interface components
|
217 |
+
# audio_input = gr.Audio(source="microphone", type="numpy", label="Speak and click submit")
|
218 |
+
# output_text = gr.Textbox(label="Status", placeholder="Status will appear here")
|
219 |
+
|
220 |
+
# # Function to capture and process the audio input
|
221 |
+
# def process_audio(audio):
|
222 |
+
# global line_index, lines
|
223 |
+
|
224 |
+
# try:
|
225 |
+
# text_line = lines[line_index].strip()
|
226 |
+
# file_path = save_audio_to_file(audio)
|
227 |
+
# save_to_hf_dataset(text_line, file_path)
|
228 |
+
# return f"Audio saved to {file_path} and uploaded to Hugging Face Dataset."
|
229 |
+
# except Exception as e:
|
230 |
+
# return f"Error saving audio: {str(e)}"
|
231 |
+
|
232 |
+
# # Function to handle navigation buttons
|
233 |
+
# def navigate_lines(button):
|
234 |
+
# global line_index, lines
|
235 |
+
|
236 |
+
# if button == 'forward':
|
237 |
+
# line_index = min(line_index + 1, len(lines) - 1)
|
238 |
+
# elif button == 'previous':
|
239 |
+
# line_index = max(line_index - 1, 0)
|
240 |
+
|
241 |
+
# output_text.value = lines[line_index]
|
242 |
+
|
243 |
+
# # Create the Gradio interface
|
244 |
+
# with gr.Blocks() as iface:
|
245 |
+
# with gr.Row():
|
246 |
+
# gr.Textbox(label="Text", value=lines[line_index], interactive=False)
|
247 |
+
# with gr.Row():
|
248 |
+
# audio_input.render()
|
249 |
+
# with gr.Row():
|
250 |
+
# gr.Button("Previous").click(lambda: navigate_lines('previous'), outputs=output_text)
|
251 |
+
# gr.Button("Forward").click(lambda: navigate_lines('forward'), outputs=output_text)
|
252 |
+
# gr.Button("Submit").click(process_audio, inputs=audio_input, outputs=output_text)
|
253 |
+
|
254 |
+
# return iface
|
255 |
+
|
256 |
+
# # Launch the interface
|
257 |
+
# iface = audio_capture_interface()
|
258 |
+
# iface.launch()
|
259 |
+
|
260 |
import gradio as gr
|
261 |
import os
|
262 |
import wave
|
|
|
272 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
273 |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-calculator-demo")
|
274 |
|
275 |
+
# Ensure the directory exists
|
276 |
+
os.makedirs('./audio_samples', exist_ok=True)
|
277 |
+
|
278 |
# Function to read lines from a file
|
279 |
def read_lines_from_file(file_path):
|
280 |
global lines
|
|
|
306 |
def audio_capture_interface():
|
307 |
global file_index, line_index, lines
|
308 |
|
309 |
+
# Check for files in the directory
|
310 |
+
files = [f for f in os.listdir('./audio_samples') if os.path.isfile(os.path.join('./audio_samples', f))]
|
311 |
+
if not files:
|
312 |
+
return gr.Interface(fn=lambda: "No text files found in the directory.", inputs=None, outputs="text")
|
313 |
+
|
314 |
read_lines_from_file(os.path.join('./audio_samples', files[file_index]))
|
315 |
|
316 |
# Define the interface components
|
|
|
338 |
elif button == 'previous':
|
339 |
line_index = max(line_index - 1, 0)
|
340 |
|
341 |
+
return lines[line_index].strip()
|
342 |
|
343 |
# Create the Gradio interface
|
344 |
with gr.Blocks() as iface:
|
345 |
with gr.Row():
|
346 |
+
text_display = gr.Textbox(label="Text", value=lines[line_index].strip(), interactive=False)
|
347 |
with gr.Row():
|
348 |
audio_input.render()
|
349 |
with gr.Row():
|
350 |
+
gr.Button("Previous").click(lambda: navigate_lines('previous'), None, text_display)
|
351 |
+
gr.Button("Forward").click(lambda: navigate_lines('forward'), None, text_display)
|
352 |
gr.Button("Submit").click(process_audio, inputs=audio_input, outputs=output_text)
|
353 |
|
354 |
return iface
|
|
|
356 |
# Launch the interface
|
357 |
iface = audio_capture_interface()
|
358 |
iface.launch()
|
|