Gptneoxsmall / app.py
Sakalti's picture
Update app.py
ac66610 verified
raw
history blame
2.2 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# モデルとトークナイザーの読み込み
model_name = "EleutherAI/Pythia-1b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True)
# 応答を生成する関数
def respond(message, history, max_tokens, temperature, top_p):
# 入力履歴と新しいメッセージを連結
if history is None:
history = []
input_text = ""
for user_message, bot_response in history:
input_text += f"User: {user_message}\nAssistant: {bot_response}\n"
input_text += f"User: {message}\nAssistant:"
# トークナイズ
inputs = tokenizer(input_text, return_tensors="pt")
# モデルによる応答生成
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=inputs.input_ids.shape[1] + max_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
)
# 応答をデコード
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 最後のユーザー入力以降の応答部分を抽出
response = response.split("Assistant:")[-1].strip()
# 応答と履歴を更新
history.append((message, response))
return response, history
# Gradioインターフェースの設定
with gr.Blocks() as demo:
gr.Markdown("## AIチャット")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...")
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="新規トークン最大")
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="温度")
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (核サンプリング)")
send_button = gr.Button("送信")
clear = gr.Button("クリア")
def clear_history():
return [], []
send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot])
clear.click(clear_history, outputs=[chatbot])
demo.launch()