Sakalti commited on
Commit
bdb17a0
1 Parent(s): 7fa974f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -59
app.py CHANGED
@@ -1,60 +1,63 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
-
5
- # モデルとトークナイザーの読み込み
6
- model_name = "Qwen/Qwen2.5-Coder-7B-Instruct"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True)
9
-
10
- # 応答を生成する関数
11
- def respond(message, history, max_tokens, temperature, top_p):
12
- # 入力履歴と新しいメッセージを連結
13
- if history is None:
14
- history = []
15
-
16
- input_text = ""
17
- for user_message, bot_response in history:
18
- input_text += f"User: {user_message}\nAssistant: {bot_response}\n"
19
- input_text += f"User: {message}\nAssistant:"
20
-
21
- # トークナイズ
22
- inputs = tokenizer(input_text, return_tensors="pt")
23
-
24
- # モデルによる応答生成
25
- with torch.no_grad():
26
- outputs = model.generate(
27
- inputs.input_ids,
28
- max_length=inputs.input_ids.shape[1] + max_tokens,
29
- do_sample=True,
30
- top_p=top_p,
31
- temperature=temperature,
32
- )
33
-
34
- # 応答をデコード
35
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
36
- # 最後のユーザー入力以降の応答部分を抽出
37
- response = response.split("Assistant:")[-1].strip()
38
-
39
- # 応答と履歴を更新
40
- history.append((message, response))
41
- return response, history
42
-
43
- # Gradioインターフェースの設定
44
- with gr.Blocks() as demo:
45
- gr.Markdown("## AIチャット")
46
- chatbot = gr.Chatbot()
47
- msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...")
48
- max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max new tokens")
49
- temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
50
- top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
51
- send_button = gr.Button("送信")
52
- clear = gr.Button("クリア")
53
-
54
- def clear_history():
55
- return [], []
56
-
57
- send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot])
58
- clear.click(clear_history, outputs=[chatbot])
59
-
60
- demo.launch()
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("Qwen/Qwen2.5-7B-Instruct")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+ """
43
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
+ """
45
+ demo = gr.ChatInterface(
46
+ respond,
47
+ additional_inputs=[
48
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(
52
+ minimum=0.1,
53
+ maximum=1.0,
54
+ value=0.95,
55
+ step=0.05,
56
+ label="Top-p (nucleus sampling)",
57
+ ),
58
+ ],
59
+ )
60
+
61
+
62
+ if __name__ == "__main__":
63
+ demo.launch()