File size: 2,112 Bytes
3dfb9ec 6fddc37 3dfb9ec dae2dae b7e4c73 6fddc37 3dfb9ec 6fddc37 3dfb9ec dae2dae 3dfb9ec 1090fe1 b7e4c73 3dfb9ec b7e4c73 3dfb9ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
from dotenv import load_dotenv
from datasets import load_dataset, concatenate_datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
from huggingface_hub import login
# === トークン読み込み ===
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("Hugging Faceのトークンが見つかりません。`.env`ファイルまたは環境変数を確認してください。")
login(HF_TOKEN)
# === 設定 ===
BASE_MODEL = "Sakalti/template-4"
HF_REPO = "Sakalti/template-16"
HachiML/alpaca_jp_python
# === データ読み込み ===
dataset1 = load_dataset("Verah/JParaCrawl-Filtered-English-Japanese-Parallel-Corpus", split="train")
dataset2 = load_dataset("HachiML/alpaca_jp_python", split="train")
dataset3 = load_dataset("HachiML/alpaca_jp_math", split="train")
dataset = concatenate_dataset([dataset1],[dataset2],[dataset3])
# === トークナイザー & モデル準備 ===
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
# === トークナイズ関数修正版 ===
def preprocess(examples):
texts = [english + " " + japanese for english, japanese in zip(examples["english"], examples["japanese"])]
tokenized = tokenizer(texts, max_length=256, truncation=True)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
# === トレーニング設定 ===
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="no",
learning_rate=2e-5,
per_device_train_batch_size=2,
num_train_epochs=3,
save_total_limit=2,
save_steps=500,
push_to_hub=True,
hub_model_id=HF_REPO,
hub_token=HF_TOKEN,
logging_steps=100,
)
# === Trainerで学習 & アップロード ===
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
trainer.train()
trainer.push_to_hub()
tokenizer.push_to_hub(HF_REPO)
print("アップロード完了!") |