File size: 2,112 Bytes
3dfb9ec
 
6fddc37
3dfb9ec
 
 
 
 
 
 
 
 
 
 
dae2dae
b7e4c73
6fddc37
3dfb9ec
6fddc37
 
 
 
3dfb9ec
 
 
 
dae2dae
3dfb9ec
1090fe1
b7e4c73
 
 
3dfb9ec
 
 
 
 
 
 
 
 
 
 
b7e4c73
3dfb9ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from dotenv import load_dotenv
from datasets import load_dataset, concatenate_datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
from huggingface_hub import login

# === トークン読み込み ===
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("Hugging Faceのトークンが見つかりません。`.env`ファイルまたは環境変数を確認してください。")
login(HF_TOKEN)

# === 設定 ===
BASE_MODEL = "Sakalti/template-4"
HF_REPO = "Sakalti/template-16"
HachiML/alpaca_jp_python
# === データ読み込み ===
dataset1 = load_dataset("Verah/JParaCrawl-Filtered-English-Japanese-Parallel-Corpus", split="train")
dataset2 = load_dataset("HachiML/alpaca_jp_python", split="train")
dataset3 = load_dataset("HachiML/alpaca_jp_math", split="train")
dataset = concatenate_dataset([dataset1],[dataset2],[dataset3])
# === トークナイザー & モデル準備 ===
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)

# === トークナイズ関数修正版 ===
def preprocess(examples):
    texts = [english + " " + japanese for english, japanese in zip(examples["english"], examples["japanese"])]
    tokenized = tokenizer(texts, max_length=256, truncation=True)
    tokenized["labels"] = tokenized["input_ids"].copy()
    return tokenized

tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)

# === トレーニング設定 ===
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="no",
    learning_rate=2e-5,
    per_device_train_batch_size=2,
    num_train_epochs=3,
    save_total_limit=2,
    save_steps=500,
    push_to_hub=True,
    hub_model_id=HF_REPO,
    hub_token=HF_TOKEN,
    logging_steps=100,
)

# === Trainerで学習 & アップロード ===
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
)

trainer.train()
trainer.push_to_hub()
tokenizer.push_to_hub(HF_REPO)

print("アップロード完了!")