Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import itertools
|
|
7 |
import collections
|
8 |
from collections import Counter
|
9 |
import numpy as np
|
|
|
|
|
10 |
#hashtag_phrase ="#datascience"
|
11 |
#recent_tweet_count_you_want =100
|
12 |
def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
|
@@ -27,7 +29,8 @@ def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
|
|
27 |
for tweet in tweepy.Cursor(api.search_tweets, q=hashtag_phrase+' -filter:retweets',lang="en", tweet_mode='extended').items(recent_tweet_count_you_want):
|
28 |
timestamp1=tweet.created_at
|
29 |
timestamp.append(timestamp1)
|
30 |
-
tweet_text1=tweet.full_text.replace('\n',' ').encode('utf-8')
|
|
|
31 |
tweet_text.append(tweet_text1)
|
32 |
user_name1=tweet.user.screen_name.encode('utf-8')
|
33 |
user_name.append(user_name1)
|
@@ -40,9 +43,15 @@ def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
|
|
40 |
data5=pd.concat([data4,data3],axis=1)
|
41 |
data7=pd.DataFrame(user_id,columns={"user_id"})
|
42 |
data6=pd.concat([data5,data7],axis=1)
|
43 |
-
data6.
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
#data6=data5.head(10)
|
45 |
-
return
|
46 |
iface = gr.Interface(
|
47 |
search_hashtag1,inputs=["text","number"],
|
48 |
outputs="dataframe",
|
|
|
7 |
import collections
|
8 |
from collections import Counter
|
9 |
import numpy as np
|
10 |
+
from transformers import pipeline
|
11 |
+
classifier = pipeline('sentiment-analysis')
|
12 |
#hashtag_phrase ="#datascience"
|
13 |
#recent_tweet_count_you_want =100
|
14 |
def search_hashtag1(hashtag_phrase,recent_tweet_count_you_want):
|
|
|
29 |
for tweet in tweepy.Cursor(api.search_tweets, q=hashtag_phrase+' -filter:retweets',lang="en", tweet_mode='extended').items(recent_tweet_count_you_want):
|
30 |
timestamp1=tweet.created_at
|
31 |
timestamp.append(timestamp1)
|
32 |
+
#tweet_text1=tweet.full_text.replace('\n',' ').encode('utf-8')
|
33 |
+
tweet_text1=tweet.full_text
|
34 |
tweet_text.append(tweet_text1)
|
35 |
user_name1=tweet.user.screen_name.encode('utf-8')
|
36 |
user_name.append(user_name1)
|
|
|
43 |
data5=pd.concat([data4,data3],axis=1)
|
44 |
data7=pd.DataFrame(user_id,columns={"user_id"})
|
45 |
data6=pd.concat([data5,data7],axis=1)
|
46 |
+
tweet_list=data6.tweet_text.to_list()
|
47 |
+
p = [i for i in classifier(tweet_list)]
|
48 |
+
q=[p[i]['label'] for i in range(len(p))]
|
49 |
+
data10=pd.DataFrame(q,columns={"sentiment"})
|
50 |
+
data_tweet_final=pd.concat([data6,data10],axis=1)
|
51 |
+
data_tweet_final.to_csv("tweet_data2.csv")
|
52 |
+
#data6.to_csv("tweet_data1.csv")
|
53 |
#data6=data5.head(10)
|
54 |
+
return data_tweet_final
|
55 |
iface = gr.Interface(
|
56 |
search_hashtag1,inputs=["text","number"],
|
57 |
outputs="dataframe",
|