Spaces:
Runtime error
Runtime error
File size: 9,520 Bytes
af98fd6 f0df289 af98fd6 f0df289 af98fd6 f0df289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import glob
import json
import os
import xml.etree.ElementTree as ET
import cv2
# from sklearn.externals import joblib
import joblib
import numpy as np
import pandas as pd
# from .variables import old_ocr_req_cols
# from .skew_correction import PageSkewWraper
const_HW = 1.294117647
const_W = 600
# https://www.forbes.com/sites/forbestechcouncil/2020/06/02/leveraging-technologies-to-align-realograms-and-planograms-for-grocery/?sh=506b8b78e86c
# https://stackoverflow.com/questions/39403183/python-opencv-sorting-contours
# http://devdoc.net/linux/OpenCV-3.2.0/da/d0c/tutorial_bounding_rects_circles.html
# https://stackoverflow.com/questions/10297713/find-contour-of-the-set-of-points-in-opencv
# https://stackoverflow.com/questions/16538774/dealing-with-contours-and-bounding-rectangle-in-opencv-2-4-python-2-7
# https://stackoverflow.com/questions/50308055/creating-bounding-boxes-for-contours
# https://stackoverflow.com/questions/57296398/how-can-i-get-better-results-of-bounding-box-using-find-contours-of-opencv
# http://amroamroamro.github.io/mexopencv/opencv/generalContours_demo1.html
# https://gist.github.com/bigsnarfdude/d811e31ee17495f82f10db12651ae82d
# http://man.hubwiz.com/docset/OpenCV.docset/Contents/Resources/Documents/da/d0c/tutorial_bounding_rects_circles.html
# https://www.analyticsvidhya.com/blog/2021/05/document-layout-detection-and-ocr-with-detectron2/
# https://colab.research.google.com/drive/1m6gaQF6Q4M0IaSjoo_4jWllKJjK-i6fw?usp=sharing#scrollTo=lEyl3wYKHAe1
# https://stackoverflow.com/questions/39403183/python-opencv-sorting-contours
# https://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
# https://www.pyimagesearch.com/2016/03/21/ordering-coordinates-clockwise-with-python-and-opencv/
from PIL import Image, ImageDraw, ImageFont
import numpy as np
def annotate_planogram_compliance(
img0, sorted_df, correct_indexes, wrong_indexes, target_names
):
# Convert numpy array to PIL image
img_pil = Image.fromarray(img0)
# Create ImageDraw object
draw = ImageDraw.Draw(img_pil)
# Load a font
font = ImageFont.truetype("arial.ttf", 16) # You may need to adjust the font path
for x, y in zip(*correct_indexes):
try:
row = sorted_df[sorted_df["line_number"] == x + 1].iloc[y]
xyxy = row[["xmin", "ymin", "xmax", "ymax"]].values
label = f'{target_names[row["cls"]]}'
color = (0, 255, 0)
top_left = (row["xmin"], row["ymin"])
bottom_right = (row["xmax"], row["ymax"])
# Draw bounding box
draw.rectangle([tuple(top_left), tuple(bottom_right)], outline=color)
# Draw label
draw.text(top_left, label, fill=color, font=font)
except Exception as e:
print("Error: " + str(e))
continue
for x, y in zip(*wrong_indexes):
try:
row = sorted_df[sorted_df["line_number"] == x + 1].iloc[y]
xyxy = row[["xmin", "ymin", "xmax", "ymax"]].values
label = f'{target_names[row["cls"]]}'
color = (0, 0, 255)
top_left = (row["xmin"], row["ymin"])
bottom_right = (row["xmax"], row["ymax"])
# Draw bounding box
draw.rectangle([tuple(top_left), tuple(bottom_right)], outline=color)
# Draw label
draw.text(top_left, label, fill=color, font=font)
except Exception as e:
print("Error: " + str(e))
continue
# Convert PIL image back to numpy array
annotated_img_np = np.array(img_pil)
return annotated_img_np
def bucket_sort(df, colmn, ymax_col="ymax", ymin_col="ymin"):
df["line_number"] = 0
colmn.append("line_number")
array_value = df[colmn].values
start_index = Line_counter = counter = 0
ymax, ymin, line_no = (
colmn.index(ymax_col),
colmn.index(ymin_col),
colmn.index("line_number"),
)
while counter < len(array_value):
current_ymax = array_value[start_index][ymax]
for next_index in range(start_index, len(array_value)):
counter += 1
next_ymin = array_value[next_index][ymin]
next_ymax = array_value[next_index][ymax]
if current_ymax > next_ymin:
array_value[next_index][line_no] = Line_counter + 1
# if current_ymax < next_ymax:
# current_ymax = next_ymax
else:
counter -= 1
break
# print(counter, len(array_value), start_index)
start_index = counter
Line_counter += 1
return pd.DataFrame(array_value, columns=colmn)
def do_sorting(df):
df.sort_values(["ymin", "xmin"], ascending=True, inplace=True)
df["idx"] = df.index
if "line_number" in df.columns:
print("line number removed")
df.drop("line_number", axis=1, inplace=True)
req_colns = ["xmin", "ymin", "xmax", "ymax", "idx"]
temp_df = df.copy()
temp = bucket_sort(temp_df.copy(), req_colns)
df = df.merge(temp[["idx", "line_number"]], on="idx")
df.sort_values(["line_number", "xmin"], ascending=True, inplace=True)
df = df.reset_index(drop=True)
df = df.reset_index(drop=True)
return df
def xml_to_csv(xml_file):
# https://gist.github.com/rotemtam/88d9a4efae243fc77ed4a0f9917c8f6c
xml_list = []
# for xml_file in glob.glob(path + '/*.xml'):
# https://discuss.streamlit.io/t/unable-to-read-files-using-standard-file-uploader/2258/2
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall("object"):
bbx = member.find("bndbox")
xmin = int(bbx.find("xmin").text)
ymin = int(bbx.find("ymin").text)
xmax = int(bbx.find("xmax").text)
ymax = int(bbx.find("ymax").text)
label = member.find("name").text
value = (
root.find("filename").text,
int(root.find("size")[0].text),
int(root.find("size")[1].text),
label,
xmin,
ymin,
xmax,
ymax,
)
xml_list.append(value)
column_name = [
"filename",
"width",
"height",
"cls",
"xmin",
"ymin",
"xmax",
"ymax",
]
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
# def annotate_planogram_compliance(img0, sorted_xml_df, wrong_indexes, target_names):
# # annotator = Annotator(img0, line_width=3, pil=True)
# det = sorted_xml_df[['xmin', 'ymin', 'xmax', 'ymax','cls']].values
# # det[:, :4] = scale_coords((640, 640), det[:, :4], img0.shape).round()
# for i, (*xyxy, cls) in enumerate(det):
# c = int(cls) # integer class
# if i in wrong_indexes:
# # print(xyxy, "Wrong detection", (255, 0, 0))
# label = "Wrong detection"
# color = (0,0,255)
# else:
# # print(xyxy, label, (0, 255, 0))
# label = f'{target_names[c]}'
# color = (0,255, 0)
# org = (int(xyxy[0]), int(xyxy[1]) )
# top_left = org
# bottom_right = (int(xyxy[2]), int(xyxy[3]))
# # print("#"*50)
# # print(f"Anooatting cv2 rectangle with shape: { img0.shape}, top left: { top_left}, bottom right: { bottom_right} , color : { color }, thickness: {3}, cv2.LINE_8")
# # print("#"*50)
# cv2.rectangle(img0, top_left, bottom_right , color, 3, cv2.LINE_8)
# cv2.putText(img0, label, tuple(org), cv2. FONT_HERSHEY_SIMPLEX , 0.5, color)
# return img0
# def annotate_planogram_compliance(
# img0, sorted_df, correct_indexes, wrong_indexes, target_names
# ):
# # annotator = Annotator(img0, line_width=3, pil=True)
# det = sorted_df[["xmin", "ymin", "xmax", "ymax", "cls"]].values
# # det[:, :4] = scale_coords((640, 640), det[:, :4], img0.shape).round()
# for x, y in zip(*correct_indexes):
# try:
# row = sorted_df[sorted_df["line_number"] == x + 1].iloc[y]
# xyxy = row[["xmin", "ymin", "xmax", "ymax"]].values
# label = f'{target_names[row["cls"]]}'
# color = (0, 255, 0)
# # org = (int(xyxy[0]), int(xyxy[1]) )
# top_left = (int(row["xmin"]), int(row["ymin"]))
# bottom_right = (int(row["xmax"]), int(row["ymax"]))
# cv2.rectangle(img0, top_left, bottom_right, color, 3, cv2.LINE_8)
# cv2.putText(
# img0, label, top_left, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color
# )
# except Exception as e:
# print("Error: " + str(e))
# continue
# for x, y in zip(*wrong_indexes):
# try:
# row = sorted_df[sorted_df["line_number"] == x + 1].iloc[y]
# xyxy = row[["xmin", "ymin", "xmax", "ymax"]].values
# label = f'{target_names[row["cls"]]}'
# color = (0, 0, 255)
# # org = (int(xyxy[0]), int(xyxy[1]) )
# top_left = (row["xmin"], row["ymin"])
# bottom_right = (row["xmax"], row["ymax"])
# cv2.rectangle(img0, top_left, bottom_right, color, 3, cv2.LINE_8)
# cv2.putText(
# img0, label, top_left, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color
# )
# except Exception as e:
# print("Error: " + str(e))
# continue
# return img0
|