Upload 11 files
Browse files- .gitattributes +1 -0
- LICENSE.md +674 -0
- OIP.jpg +0 -0
- README.md +329 -13
- demo_file.mp4 +3 -0
- detect.py +231 -0
- detect_dual.py +232 -0
- export.py +686 -0
- hubconf.py +107 -0
- requirements.txt +47 -0
- test.mp4 +0 -0
- train.py +634 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
demo_file.mp4 filter=lfs diff=lfs merge=lfs -text
|
LICENSE.md
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
OIP.jpg
ADDED
![]() |
README.md
CHANGED
@@ -1,13 +1,329 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv9
|
2 |
+
|
3 |
+
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
|
4 |
+
|
5 |
+
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616)
|
6 |
+
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9)
|
7 |
+
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9)
|
8 |
+
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
|
9 |
+
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
|
10 |
+
|
11 |
+
<div align="center">
|
12 |
+
<a href="./">
|
13 |
+
<img src="./figure/performance.png" width="79%"/>
|
14 |
+
</a>
|
15 |
+
</div>
|
16 |
+
|
17 |
+
|
18 |
+
## Performance
|
19 |
+
|
20 |
+
MS COCO
|
21 |
+
|
22 |
+
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
23 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
24 |
+
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
|
25 |
+
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
|
26 |
+
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
|
27 |
+
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
|
28 |
+
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
29 |
+
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
|
30 |
+
|
31 |
+
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
|
32 |
+
|
33 |
+
## Useful Links
|
34 |
+
|
35 |
+
<details><summary> <b>Expand</b> </summary>
|
36 |
+
|
37 |
+
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
|
38 |
+
|
39 |
+
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
|
40 |
+
|
41 |
+
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
|
42 |
+
|
43 |
+
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
|
44 |
+
|
45 |
+
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
|
46 |
+
|
47 |
+
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
|
48 |
+
|
49 |
+
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
|
50 |
+
|
51 |
+
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
|
52 |
+
|
53 |
+
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
|
54 |
+
|
55 |
+
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
|
56 |
+
|
57 |
+
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
|
58 |
+
|
59 |
+
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
|
60 |
+
|
61 |
+
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
|
62 |
+
|
63 |
+
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
|
64 |
+
|
65 |
+
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
|
66 |
+
|
67 |
+
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
|
68 |
+
|
69 |
+
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
|
70 |
+
|
71 |
+
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
|
72 |
+
|
73 |
+
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
|
74 |
+
|
75 |
+
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
|
76 |
+
|
77 |
+
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
|
78 |
+
|
79 |
+
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
|
80 |
+
|
81 |
+
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
|
82 |
+
|
83 |
+
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
|
84 |
+
|
85 |
+
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
|
86 |
+
|
87 |
+
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
|
88 |
+
|
89 |
+
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
|
90 |
+
|
91 |
+
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
|
92 |
+
|
93 |
+
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
|
94 |
+
|
95 |
+
</details>
|
96 |
+
|
97 |
+
|
98 |
+
## Installation
|
99 |
+
|
100 |
+
Docker environment (recommended)
|
101 |
+
<details><summary> <b>Expand</b> </summary>
|
102 |
+
|
103 |
+
``` shell
|
104 |
+
# create the docker container, you can change the share memory size if you have more.
|
105 |
+
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
|
106 |
+
|
107 |
+
# apt install required packages
|
108 |
+
apt update
|
109 |
+
apt install -y zip htop screen libgl1-mesa-glx
|
110 |
+
|
111 |
+
# pip install required packages
|
112 |
+
pip install seaborn thop
|
113 |
+
|
114 |
+
# go to code folder
|
115 |
+
cd /yolov9
|
116 |
+
```
|
117 |
+
|
118 |
+
</details>
|
119 |
+
|
120 |
+
|
121 |
+
## Evaluation
|
122 |
+
|
123 |
+
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
|
124 |
+
|
125 |
+
``` shell
|
126 |
+
# evaluate converted yolov9 models
|
127 |
+
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
|
128 |
+
|
129 |
+
# evaluate yolov9 models
|
130 |
+
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
|
131 |
+
|
132 |
+
# evaluate gelan models
|
133 |
+
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
|
134 |
+
```
|
135 |
+
|
136 |
+
You will get the results:
|
137 |
+
|
138 |
+
```
|
139 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
|
140 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
|
141 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
|
142 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
|
143 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
|
144 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
|
145 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
|
146 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
|
147 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
|
148 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
|
149 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
|
150 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
|
151 |
+
```
|
152 |
+
|
153 |
+
|
154 |
+
## Training
|
155 |
+
|
156 |
+
Data preparation
|
157 |
+
|
158 |
+
``` shell
|
159 |
+
bash scripts/get_coco.sh
|
160 |
+
```
|
161 |
+
|
162 |
+
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
|
163 |
+
|
164 |
+
Single GPU training
|
165 |
+
|
166 |
+
``` shell
|
167 |
+
# train yolov9 models
|
168 |
+
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
169 |
+
|
170 |
+
# train gelan models
|
171 |
+
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
172 |
+
```
|
173 |
+
|
174 |
+
Multiple GPU training
|
175 |
+
|
176 |
+
``` shell
|
177 |
+
# train yolov9 models
|
178 |
+
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
179 |
+
|
180 |
+
# train gelan models
|
181 |
+
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
182 |
+
```
|
183 |
+
|
184 |
+
|
185 |
+
## Re-parameterization
|
186 |
+
|
187 |
+
See [reparameterization.ipynb](https://github.com/WongKinYiu/yolov9/blob/main/tools/reparameterization.ipynb).
|
188 |
+
|
189 |
+
|
190 |
+
## Inference
|
191 |
+
|
192 |
+
<div align="center">
|
193 |
+
<a href="./">
|
194 |
+
<img src="./figure/horses_prediction.jpg" width="49%"/>
|
195 |
+
</a>
|
196 |
+
</div>
|
197 |
+
|
198 |
+
``` shell
|
199 |
+
# inference converted yolov9 models
|
200 |
+
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect
|
201 |
+
|
202 |
+
# inference yolov9 models
|
203 |
+
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect
|
204 |
+
|
205 |
+
# inference gelan models
|
206 |
+
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect
|
207 |
+
```
|
208 |
+
|
209 |
+
|
210 |
+
## Citation
|
211 |
+
|
212 |
+
```
|
213 |
+
@article{wang2024yolov9,
|
214 |
+
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
|
215 |
+
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
|
216 |
+
booktitle={arXiv preprint arXiv:2402.13616},
|
217 |
+
year={2024}
|
218 |
+
}
|
219 |
+
```
|
220 |
+
|
221 |
+
```
|
222 |
+
@article{chang2023yolor,
|
223 |
+
title={{YOLOR}-Based Multi-Task Learning},
|
224 |
+
author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark},
|
225 |
+
journal={arXiv preprint arXiv:2309.16921},
|
226 |
+
year={2023}
|
227 |
+
}
|
228 |
+
```
|
229 |
+
|
230 |
+
|
231 |
+
## Teaser
|
232 |
+
|
233 |
+
Parts of code of [YOLOR-Based Multi-Task Learning](https://arxiv.org/abs/2309.16921) are released in the repository.
|
234 |
+
|
235 |
+
<div align="center">
|
236 |
+
<a href="./">
|
237 |
+
<img src="./figure/multitask.png" width="99%"/>
|
238 |
+
</a>
|
239 |
+
</div>
|
240 |
+
|
241 |
+
#### Object Detection
|
242 |
+
|
243 |
+
[`gelan-c-det.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt)
|
244 |
+
|
245 |
+
`object detection`
|
246 |
+
|
247 |
+
``` shell
|
248 |
+
# coco/labels/{split}/*.txt
|
249 |
+
# bbox or polygon (1 instance 1 line)
|
250 |
+
python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10
|
251 |
+
```
|
252 |
+
|
253 |
+
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> |
|
254 |
+
| :-- | :-: | :-: | :-: | :-: |
|
255 |
+
| [**GELAN-C-DET**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt) | 640 | 25.3M | 102.1G |**52.3%** |
|
256 |
+
| [**YOLOv9-C-DET**]() | 640 | 25.3M | 102.1G | **53.0%** |
|
257 |
+
|
258 |
+
#### Instance Segmentation
|
259 |
+
|
260 |
+
[`gelan-c-seg.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt)
|
261 |
+
|
262 |
+
`object detection` `instance segmentation`
|
263 |
+
|
264 |
+
``` shell
|
265 |
+
# coco/labels/{split}/*.txt
|
266 |
+
# polygon (1 instance 1 line)
|
267 |
+
python segment/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
268 |
+
```
|
269 |
+
|
270 |
+
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> |
|
271 |
+
| :-- | :-: | :-: | :-: | :-: | :-: |
|
272 |
+
| [**GELAN-C-SEG**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt) | 640 | 27.4M | 144.6G | **52.3%** | **42.4%** |
|
273 |
+
| [**YOLOv9-C-SEG**]() | 640 | 27.4M | 145.5G | **53.3%** | **43.5%** |
|
274 |
+
|
275 |
+
#### Panoptic Segmentation
|
276 |
+
|
277 |
+
[`gelan-c-pan.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt)
|
278 |
+
|
279 |
+
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation`
|
280 |
+
|
281 |
+
``` shell
|
282 |
+
# coco/labels/{split}/*.txt
|
283 |
+
# polygon (1 instance 1 line)
|
284 |
+
# coco/stuff/{split}/*.txt
|
285 |
+
# polygon (1 semantic 1 line)
|
286 |
+
python panoptic/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
287 |
+
```
|
288 |
+
|
289 |
+
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> |
|
290 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
291 |
+
| [**GELAN-C-PAN**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt) | 640 | 27.6M | 146.7G | **52.6%** | **42.5%** | **39.0%/48.3%** | **52.7%** | **39.4%** |
|
292 |
+
| [**YOLOv9-C-PAN**]() | 640 | 28.8M | 187.0G | **52.7%** | **43.0%** | **39.8%/-** | **52.2%** | **40.5%** |
|
293 |
+
|
294 |
+
#### Image Captioning (not yet released)
|
295 |
+
|
296 |
+
<!--[`gelan-c-cap.pt`]()-->
|
297 |
+
|
298 |
+
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation` `image captioning`
|
299 |
+
|
300 |
+
``` shell
|
301 |
+
# coco/labels/{split}/*.txt
|
302 |
+
# polygon (1 instance 1 line)
|
303 |
+
# coco/stuff/{split}/*.txt
|
304 |
+
# polygon (1 semantic 1 line)
|
305 |
+
# coco/annotations/*.json
|
306 |
+
# json (1 split 1 file)
|
307 |
+
python caption/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
308 |
+
```
|
309 |
+
|
310 |
+
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> | BLEU@4<sup>caption</sup> | CIDEr<sup>caption</sup> |
|
311 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
312 |
+
| [**GELAN-C-CAP**]() | 640 | 47.5M | - | **51.9%** | **42.6%** | **42.5%/-** | **56.5%** | **41.7%** | **38.8** | **122.3** |
|
313 |
+
| [**YOLOv9-C-CAP**]() | 640 | 47.5M | - | **52.1%** | **42.6%** | **43.0%/-** | **56.4%** | **42.1%** | **39.1** | **122.0** |
|
314 |
+
<!--| [**YOLOR-MT**]() | 640 | 79.3M | - | **51.0%** | **41.7%** | **-/49.6%** | **55.9%** | **40.5%** | **35.7** | **112.7** |-->
|
315 |
+
|
316 |
+
|
317 |
+
## Acknowledgements
|
318 |
+
|
319 |
+
<details><summary> <b>Expand</b> </summary>
|
320 |
+
|
321 |
+
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
|
322 |
+
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
|
323 |
+
* [https://github.com/WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7)
|
324 |
+
* [https://github.com/VDIGPKU/DynamicDet](https://github.com/VDIGPKU/DynamicDet)
|
325 |
+
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
|
326 |
+
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|
327 |
+
* [https://github.com/meituan/YOLOv6](https://github.com/meituan/YOLOv6)
|
328 |
+
|
329 |
+
</details>
|
demo_file.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2352e7a5e3efa532cf4d6208c82449c0bcdb7360f619dbd6a1cadc64df0167a4
|
3 |
+
size 1720613
|
detect.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import platform
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
FILE = Path(__file__).resolve()
|
10 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
11 |
+
if str(ROOT) not in sys.path:
|
12 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
14 |
+
|
15 |
+
from models.common import DetectMultiBackend
|
16 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
17 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
18 |
+
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
19 |
+
from utils.plots import Annotator, colors, save_one_box
|
20 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
21 |
+
|
22 |
+
|
23 |
+
@smart_inference_mode()
|
24 |
+
def run(
|
25 |
+
weights=ROOT / 'yolo.pt', # model path or triton URL
|
26 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
27 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
28 |
+
imgsz=(640, 640), # inference size (height, width)
|
29 |
+
conf_thres=0.25, # confidence threshold
|
30 |
+
iou_thres=0.45, # NMS IOU threshold
|
31 |
+
max_det=1000, # maximum detections per image
|
32 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
33 |
+
view_img=False, # show results
|
34 |
+
save_txt=False, # save results to *.txt
|
35 |
+
save_conf=False, # save confidences in --save-txt labels
|
36 |
+
save_crop=False, # save cropped prediction boxes
|
37 |
+
nosave=False, # do not save images/videos
|
38 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
39 |
+
agnostic_nms=False, # class-agnostic NMS
|
40 |
+
augment=False, # augmented inference
|
41 |
+
visualize=False, # visualize features
|
42 |
+
update=False, # update all models
|
43 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
44 |
+
name='exp', # save results to project/name
|
45 |
+
exist_ok=False, # existing project/name ok, do not increment
|
46 |
+
line_thickness=3, # bounding box thickness (pixels)
|
47 |
+
hide_labels=False, # hide labels
|
48 |
+
hide_conf=False, # hide confidences
|
49 |
+
half=False, # use FP16 half-precision inference
|
50 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
51 |
+
vid_stride=1, # video frame-rate stride
|
52 |
+
):
|
53 |
+
source = str(source)
|
54 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
55 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
56 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
57 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
58 |
+
screenshot = source.lower().startswith('screen')
|
59 |
+
if is_url and is_file:
|
60 |
+
source = check_file(source) # download
|
61 |
+
|
62 |
+
# Directories
|
63 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
64 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
65 |
+
|
66 |
+
# Load model
|
67 |
+
device = select_device(device)
|
68 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
69 |
+
stride, names, pt = model.stride, model.names, model.pt
|
70 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
71 |
+
|
72 |
+
# Dataloader
|
73 |
+
bs = 1 # batch_size
|
74 |
+
if webcam:
|
75 |
+
view_img = check_imshow(warn=True)
|
76 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
77 |
+
bs = len(dataset)
|
78 |
+
elif screenshot:
|
79 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
80 |
+
else:
|
81 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
82 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
83 |
+
|
84 |
+
# Run inference
|
85 |
+
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
86 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
87 |
+
for path, im, im0s, vid_cap, s in dataset:
|
88 |
+
with dt[0]:
|
89 |
+
im = torch.from_numpy(im).to(model.device)
|
90 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
91 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
92 |
+
if len(im.shape) == 3:
|
93 |
+
im = im[None] # expand for batch dim
|
94 |
+
|
95 |
+
# Inference
|
96 |
+
with dt[1]:
|
97 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
98 |
+
pred = model(im, augment=augment, visualize=visualize)
|
99 |
+
|
100 |
+
# NMS
|
101 |
+
with dt[2]:
|
102 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
103 |
+
|
104 |
+
# Second-stage classifier (optional)
|
105 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
106 |
+
|
107 |
+
# Process predictions
|
108 |
+
for i, det in enumerate(pred): # per image
|
109 |
+
seen += 1
|
110 |
+
if webcam: # batch_size >= 1
|
111 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
112 |
+
s += f'{i}: '
|
113 |
+
else:
|
114 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
115 |
+
|
116 |
+
p = Path(p) # to Path
|
117 |
+
save_path = str(save_dir / p.name) # im.jpg
|
118 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
119 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
120 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
121 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
122 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
123 |
+
if len(det):
|
124 |
+
# Rescale boxes from img_size to im0 size
|
125 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
126 |
+
|
127 |
+
# Print results
|
128 |
+
for c in det[:, 5].unique():
|
129 |
+
n = (det[:, 5] == c).sum() # detections per class
|
130 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
131 |
+
|
132 |
+
# Write results
|
133 |
+
for *xyxy, conf, cls in reversed(det):
|
134 |
+
if save_txt: # Write to file
|
135 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
136 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
137 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
138 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
139 |
+
|
140 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
141 |
+
c = int(cls) # integer class
|
142 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
143 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
144 |
+
if save_crop:
|
145 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
146 |
+
|
147 |
+
# Stream results
|
148 |
+
im0 = annotator.result()
|
149 |
+
if view_img:
|
150 |
+
if platform.system() == 'Linux' and p not in windows:
|
151 |
+
windows.append(p)
|
152 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
153 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
154 |
+
cv2.imshow(str(p), im0)
|
155 |
+
cv2.waitKey(1) # 1 millisecond
|
156 |
+
|
157 |
+
# Save results (image with detections)
|
158 |
+
if save_img:
|
159 |
+
if dataset.mode == 'image':
|
160 |
+
cv2.imwrite(save_path, im0)
|
161 |
+
else: # 'video' or 'stream'
|
162 |
+
if vid_path[i] != save_path: # new video
|
163 |
+
vid_path[i] = save_path
|
164 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
165 |
+
vid_writer[i].release() # release previous video writer
|
166 |
+
if vid_cap: # video
|
167 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
168 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
169 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
170 |
+
else: # stream
|
171 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
172 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
173 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
174 |
+
vid_writer[i].write(im0)
|
175 |
+
|
176 |
+
# Print time (inference-only)
|
177 |
+
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
178 |
+
|
179 |
+
# Print results
|
180 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
181 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
182 |
+
if save_txt or save_img:
|
183 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
184 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
185 |
+
if update:
|
186 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
187 |
+
|
188 |
+
|
189 |
+
def parse_opt():
|
190 |
+
parser = argparse.ArgumentParser()
|
191 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
|
192 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
193 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
194 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
195 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
196 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
197 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
198 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
199 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
200 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
201 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
202 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
203 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
204 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
205 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
206 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
207 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
208 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
209 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
210 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
211 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
212 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
213 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
214 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
215 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
216 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
217 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
218 |
+
opt = parser.parse_args()
|
219 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
220 |
+
print_args(vars(opt))
|
221 |
+
return opt
|
222 |
+
|
223 |
+
|
224 |
+
def main(opt):
|
225 |
+
# check_requirements(exclude=('tensorboard', 'thop'))
|
226 |
+
run(**vars(opt))
|
227 |
+
|
228 |
+
|
229 |
+
if __name__ == "__main__":
|
230 |
+
opt = parse_opt()
|
231 |
+
main(opt)
|
detect_dual.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import platform
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
FILE = Path(__file__).resolve()
|
10 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
11 |
+
if str(ROOT) not in sys.path:
|
12 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
14 |
+
|
15 |
+
from models.common import DetectMultiBackend
|
16 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
17 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
18 |
+
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
19 |
+
from utils.plots import Annotator, colors, save_one_box
|
20 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
21 |
+
|
22 |
+
|
23 |
+
@smart_inference_mode()
|
24 |
+
def run(
|
25 |
+
weights=ROOT / 'yolo.pt', # model path or triton URL
|
26 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
27 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
28 |
+
imgsz=(640, 640), # inference size (height, width)
|
29 |
+
conf_thres=0.25, # confidence threshold
|
30 |
+
iou_thres=0.45, # NMS IOU threshold
|
31 |
+
max_det=1000, # maximum detections per image
|
32 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
33 |
+
view_img=False, # show results
|
34 |
+
save_txt=False, # save results to *.txt
|
35 |
+
save_conf=False, # save confidences in --save-txt labels
|
36 |
+
save_crop=False, # save cropped prediction boxes
|
37 |
+
nosave=False, # do not save images/videos
|
38 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
39 |
+
agnostic_nms=False, # class-agnostic NMS
|
40 |
+
augment=False, # augmented inference
|
41 |
+
visualize=False, # visualize features
|
42 |
+
update=False, # update all models
|
43 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
44 |
+
name='exp', # save results to project/name
|
45 |
+
exist_ok=False, # existing project/name ok, do not increment
|
46 |
+
line_thickness=3, # bounding box thickness (pixels)
|
47 |
+
hide_labels=False, # hide labels
|
48 |
+
hide_conf=False, # hide confidences
|
49 |
+
half=False, # use FP16 half-precision inference
|
50 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
51 |
+
vid_stride=1, # video frame-rate stride
|
52 |
+
):
|
53 |
+
source = str(source)
|
54 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
55 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
56 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
57 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
58 |
+
screenshot = source.lower().startswith('screen')
|
59 |
+
if is_url and is_file:
|
60 |
+
source = check_file(source) # download
|
61 |
+
|
62 |
+
# Directories
|
63 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
64 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
65 |
+
|
66 |
+
# Load model
|
67 |
+
device = select_device(device)
|
68 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
69 |
+
stride, names, pt = model.stride, model.names, model.pt
|
70 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
71 |
+
|
72 |
+
# Dataloader
|
73 |
+
bs = 1 # batch_size
|
74 |
+
if webcam:
|
75 |
+
view_img = check_imshow(warn=True)
|
76 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
77 |
+
bs = len(dataset)
|
78 |
+
elif screenshot:
|
79 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
80 |
+
else:
|
81 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
82 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
83 |
+
|
84 |
+
# Run inference
|
85 |
+
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
86 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
87 |
+
for path, im, im0s, vid_cap, s in dataset:
|
88 |
+
with dt[0]:
|
89 |
+
im = torch.from_numpy(im).to(model.device)
|
90 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
91 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
92 |
+
if len(im.shape) == 3:
|
93 |
+
im = im[None] # expand for batch dim
|
94 |
+
|
95 |
+
# Inference
|
96 |
+
with dt[1]:
|
97 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
98 |
+
pred = model(im, augment=augment, visualize=visualize)
|
99 |
+
pred = pred[0][1]
|
100 |
+
|
101 |
+
# NMS
|
102 |
+
with dt[2]:
|
103 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
104 |
+
|
105 |
+
# Second-stage classifier (optional)
|
106 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
107 |
+
|
108 |
+
# Process predictions
|
109 |
+
for i, det in enumerate(pred): # per image
|
110 |
+
seen += 1
|
111 |
+
if webcam: # batch_size >= 1
|
112 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
113 |
+
s += f'{i}: '
|
114 |
+
else:
|
115 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
116 |
+
|
117 |
+
p = Path(p) # to Path
|
118 |
+
save_path = str(save_dir / p.name) # im.jpg
|
119 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
120 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
121 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
122 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
123 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
124 |
+
if len(det):
|
125 |
+
# Rescale boxes from img_size to im0 size
|
126 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
127 |
+
|
128 |
+
# Print results
|
129 |
+
for c in det[:, 5].unique():
|
130 |
+
n = (det[:, 5] == c).sum() # detections per class
|
131 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
132 |
+
|
133 |
+
# Write results
|
134 |
+
for *xyxy, conf, cls in reversed(det):
|
135 |
+
if save_txt: # Write to file
|
136 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
137 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
138 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
139 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
140 |
+
|
141 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
142 |
+
c = int(cls) # integer class
|
143 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
144 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
145 |
+
if save_crop:
|
146 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
147 |
+
|
148 |
+
# Stream results
|
149 |
+
im0 = annotator.result()
|
150 |
+
if view_img:
|
151 |
+
if platform.system() == 'Linux' and p not in windows:
|
152 |
+
windows.append(p)
|
153 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
154 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
155 |
+
cv2.imshow(str(p), im0)
|
156 |
+
cv2.waitKey(1) # 1 millisecond
|
157 |
+
|
158 |
+
# Save results (image with detections)
|
159 |
+
if save_img:
|
160 |
+
if dataset.mode == 'image':
|
161 |
+
cv2.imwrite(save_path, im0)
|
162 |
+
else: # 'video' or 'stream'
|
163 |
+
if vid_path[i] != save_path: # new video
|
164 |
+
vid_path[i] = save_path
|
165 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
166 |
+
vid_writer[i].release() # release previous video writer
|
167 |
+
if vid_cap: # video
|
168 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
169 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
170 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
171 |
+
else: # stream
|
172 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
173 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
174 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
175 |
+
vid_writer[i].write(im0)
|
176 |
+
|
177 |
+
# Print time (inference-only)
|
178 |
+
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
179 |
+
|
180 |
+
# Print results
|
181 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
182 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
183 |
+
if save_txt or save_img:
|
184 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
185 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
186 |
+
if update:
|
187 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
188 |
+
|
189 |
+
|
190 |
+
def parse_opt():
|
191 |
+
parser = argparse.ArgumentParser()
|
192 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
|
193 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
194 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
195 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
196 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
197 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
198 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
199 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
200 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
201 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
202 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
203 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
204 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
205 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
206 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
207 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
208 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
209 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
210 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
211 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
212 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
213 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
214 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
215 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
216 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
217 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
218 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
219 |
+
opt = parser.parse_args()
|
220 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
221 |
+
print_args(vars(opt))
|
222 |
+
return opt
|
223 |
+
|
224 |
+
|
225 |
+
def main(opt):
|
226 |
+
# check_requirements(exclude=('tensorboard', 'thop'))
|
227 |
+
run(**vars(opt))
|
228 |
+
|
229 |
+
|
230 |
+
if __name__ == "__main__":
|
231 |
+
opt = parse_opt()
|
232 |
+
main(opt)
|
export.py
ADDED
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import contextlib
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import platform
|
6 |
+
import re
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
import time
|
10 |
+
import warnings
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import torch
|
15 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
16 |
+
|
17 |
+
FILE = Path(__file__).resolve()
|
18 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
19 |
+
if str(ROOT) not in sys.path:
|
20 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
21 |
+
if platform.system() != 'Windows':
|
22 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
23 |
+
|
24 |
+
from models.experimental import attempt_load, End2End
|
25 |
+
from models.yolo import ClassificationModel, Detect, DDetect, DualDetect, DualDDetect, DetectionModel, SegmentationModel
|
26 |
+
from utils.dataloaders import LoadImages
|
27 |
+
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
28 |
+
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
|
29 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
30 |
+
|
31 |
+
MACOS = platform.system() == 'Darwin' # macOS environment
|
32 |
+
|
33 |
+
|
34 |
+
def export_formats():
|
35 |
+
# YOLO export formats
|
36 |
+
x = [
|
37 |
+
['PyTorch', '-', '.pt', True, True],
|
38 |
+
['TorchScript', 'torchscript', '.torchscript', True, True],
|
39 |
+
['ONNX', 'onnx', '.onnx', True, True],
|
40 |
+
['ONNX END2END', 'onnx_end2end', '_end2end.onnx', True, True],
|
41 |
+
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
42 |
+
['TensorRT', 'engine', '.engine', False, True],
|
43 |
+
['CoreML', 'coreml', '.mlmodel', True, False],
|
44 |
+
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
45 |
+
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
46 |
+
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
47 |
+
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
48 |
+
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
49 |
+
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
50 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
51 |
+
|
52 |
+
|
53 |
+
def try_export(inner_func):
|
54 |
+
# YOLO export decorator, i..e @try_export
|
55 |
+
inner_args = get_default_args(inner_func)
|
56 |
+
|
57 |
+
def outer_func(*args, **kwargs):
|
58 |
+
prefix = inner_args['prefix']
|
59 |
+
try:
|
60 |
+
with Profile() as dt:
|
61 |
+
f, model = inner_func(*args, **kwargs)
|
62 |
+
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
63 |
+
return f, model
|
64 |
+
except Exception as e:
|
65 |
+
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
66 |
+
return None, None
|
67 |
+
|
68 |
+
return outer_func
|
69 |
+
|
70 |
+
|
71 |
+
@try_export
|
72 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
73 |
+
# YOLO TorchScript model export
|
74 |
+
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
75 |
+
f = file.with_suffix('.torchscript')
|
76 |
+
|
77 |
+
ts = torch.jit.trace(model, im, strict=False)
|
78 |
+
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
79 |
+
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
80 |
+
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
81 |
+
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
82 |
+
else:
|
83 |
+
ts.save(str(f), _extra_files=extra_files)
|
84 |
+
return f, None
|
85 |
+
|
86 |
+
|
87 |
+
@try_export
|
88 |
+
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
89 |
+
# YOLO ONNX export
|
90 |
+
check_requirements('onnx')
|
91 |
+
import onnx
|
92 |
+
|
93 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
94 |
+
f = file.with_suffix('.onnx')
|
95 |
+
|
96 |
+
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
97 |
+
if dynamic:
|
98 |
+
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
99 |
+
if isinstance(model, SegmentationModel):
|
100 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
101 |
+
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
102 |
+
elif isinstance(model, DetectionModel):
|
103 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
104 |
+
|
105 |
+
torch.onnx.export(
|
106 |
+
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
107 |
+
im.cpu() if dynamic else im,
|
108 |
+
f,
|
109 |
+
verbose=False,
|
110 |
+
opset_version=opset,
|
111 |
+
do_constant_folding=True,
|
112 |
+
input_names=['images'],
|
113 |
+
output_names=output_names,
|
114 |
+
dynamic_axes=dynamic or None)
|
115 |
+
|
116 |
+
# Checks
|
117 |
+
model_onnx = onnx.load(f) # load onnx model
|
118 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
119 |
+
|
120 |
+
# Metadata
|
121 |
+
d = {'stride': int(max(model.stride)), 'names': model.names}
|
122 |
+
for k, v in d.items():
|
123 |
+
meta = model_onnx.metadata_props.add()
|
124 |
+
meta.key, meta.value = k, str(v)
|
125 |
+
onnx.save(model_onnx, f)
|
126 |
+
|
127 |
+
# Simplify
|
128 |
+
if simplify:
|
129 |
+
try:
|
130 |
+
cuda = torch.cuda.is_available()
|
131 |
+
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
132 |
+
import onnxsim
|
133 |
+
|
134 |
+
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
135 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
136 |
+
assert check, 'assert check failed'
|
137 |
+
onnx.save(model_onnx, f)
|
138 |
+
except Exception as e:
|
139 |
+
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
140 |
+
return f, model_onnx
|
141 |
+
|
142 |
+
|
143 |
+
@try_export
|
144 |
+
def export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, labels, prefix=colorstr('ONNX END2END:')):
|
145 |
+
# YOLO ONNX export
|
146 |
+
check_requirements('onnx')
|
147 |
+
import onnx
|
148 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
149 |
+
f = os.path.splitext(file)[0] + "-end2end.onnx"
|
150 |
+
batch_size = 'batch'
|
151 |
+
|
152 |
+
dynamic_axes = {'images': {0 : 'batch', 2: 'height', 3:'width'}, } # variable length axes
|
153 |
+
|
154 |
+
output_axes = {
|
155 |
+
'num_dets': {0: 'batch'},
|
156 |
+
'det_boxes': {0: 'batch'},
|
157 |
+
'det_scores': {0: 'batch'},
|
158 |
+
'det_classes': {0: 'batch'},
|
159 |
+
}
|
160 |
+
dynamic_axes.update(output_axes)
|
161 |
+
model = End2End(model, topk_all, iou_thres, conf_thres, None ,device, labels)
|
162 |
+
|
163 |
+
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
|
164 |
+
shapes = [ batch_size, 1, batch_size, topk_all, 4,
|
165 |
+
batch_size, topk_all, batch_size, topk_all]
|
166 |
+
|
167 |
+
torch.onnx.export(model,
|
168 |
+
im,
|
169 |
+
f,
|
170 |
+
verbose=False,
|
171 |
+
export_params=True, # store the trained parameter weights inside the model file
|
172 |
+
opset_version=12,
|
173 |
+
do_constant_folding=True, # whether to execute constant folding for optimization
|
174 |
+
input_names=['images'],
|
175 |
+
output_names=output_names,
|
176 |
+
dynamic_axes=dynamic_axes)
|
177 |
+
|
178 |
+
# Checks
|
179 |
+
model_onnx = onnx.load(f) # load onnx model
|
180 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
181 |
+
for i in model_onnx.graph.output:
|
182 |
+
for j in i.type.tensor_type.shape.dim:
|
183 |
+
j.dim_param = str(shapes.pop(0))
|
184 |
+
|
185 |
+
if simplify:
|
186 |
+
try:
|
187 |
+
import onnxsim
|
188 |
+
|
189 |
+
print('\nStarting to simplify ONNX...')
|
190 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
191 |
+
assert check, 'assert check failed'
|
192 |
+
except Exception as e:
|
193 |
+
print(f'Simplifier failure: {e}')
|
194 |
+
|
195 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
196 |
+
onnx.save(model_onnx,f)
|
197 |
+
print('ONNX export success, saved as %s' % f)
|
198 |
+
return f, model_onnx
|
199 |
+
|
200 |
+
|
201 |
+
@try_export
|
202 |
+
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
203 |
+
# YOLO OpenVINO export
|
204 |
+
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
205 |
+
import openvino.inference_engine as ie
|
206 |
+
|
207 |
+
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
208 |
+
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
209 |
+
|
210 |
+
#cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
211 |
+
#cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {"--compress_to_fp16" if half else ""}"
|
212 |
+
half_arg = "--compress_to_fp16" if half else ""
|
213 |
+
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {half_arg}"
|
214 |
+
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
215 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
216 |
+
return f, None
|
217 |
+
|
218 |
+
|
219 |
+
@try_export
|
220 |
+
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
221 |
+
# YOLO Paddle export
|
222 |
+
check_requirements(('paddlepaddle', 'x2paddle'))
|
223 |
+
import x2paddle
|
224 |
+
from x2paddle.convert import pytorch2paddle
|
225 |
+
|
226 |
+
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
227 |
+
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
228 |
+
|
229 |
+
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
230 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
231 |
+
return f, None
|
232 |
+
|
233 |
+
|
234 |
+
@try_export
|
235 |
+
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
236 |
+
# YOLO CoreML export
|
237 |
+
check_requirements('coremltools')
|
238 |
+
import coremltools as ct
|
239 |
+
|
240 |
+
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
241 |
+
f = file.with_suffix('.mlmodel')
|
242 |
+
|
243 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
244 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
245 |
+
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
246 |
+
if bits < 32:
|
247 |
+
if MACOS: # quantization only supported on macOS
|
248 |
+
with warnings.catch_warnings():
|
249 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
250 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
251 |
+
else:
|
252 |
+
print(f'{prefix} quantization only supported on macOS, skipping...')
|
253 |
+
ct_model.save(f)
|
254 |
+
return f, ct_model
|
255 |
+
|
256 |
+
|
257 |
+
@try_export
|
258 |
+
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
259 |
+
# YOLO TensorRT export https://developer.nvidia.com/tensorrt
|
260 |
+
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
261 |
+
try:
|
262 |
+
import tensorrt as trt
|
263 |
+
except Exception:
|
264 |
+
if platform.system() == 'Linux':
|
265 |
+
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
266 |
+
import tensorrt as trt
|
267 |
+
|
268 |
+
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
269 |
+
grid = model.model[-1].anchor_grid
|
270 |
+
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
271 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
272 |
+
model.model[-1].anchor_grid = grid
|
273 |
+
else: # TensorRT >= 8
|
274 |
+
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
275 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
276 |
+
onnx = file.with_suffix('.onnx')
|
277 |
+
|
278 |
+
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
279 |
+
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
280 |
+
f = file.with_suffix('.engine') # TensorRT engine file
|
281 |
+
logger = trt.Logger(trt.Logger.INFO)
|
282 |
+
if verbose:
|
283 |
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
284 |
+
|
285 |
+
builder = trt.Builder(logger)
|
286 |
+
config = builder.create_builder_config()
|
287 |
+
config.max_workspace_size = workspace * 1 << 30
|
288 |
+
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
289 |
+
|
290 |
+
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
291 |
+
network = builder.create_network(flag)
|
292 |
+
parser = trt.OnnxParser(network, logger)
|
293 |
+
if not parser.parse_from_file(str(onnx)):
|
294 |
+
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
295 |
+
|
296 |
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
297 |
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
298 |
+
for inp in inputs:
|
299 |
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
300 |
+
for out in outputs:
|
301 |
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
302 |
+
|
303 |
+
if dynamic:
|
304 |
+
if im.shape[0] <= 1:
|
305 |
+
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
306 |
+
profile = builder.create_optimization_profile()
|
307 |
+
for inp in inputs:
|
308 |
+
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
309 |
+
config.add_optimization_profile(profile)
|
310 |
+
|
311 |
+
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
312 |
+
if builder.platform_has_fast_fp16 and half:
|
313 |
+
config.set_flag(trt.BuilderFlag.FP16)
|
314 |
+
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
315 |
+
t.write(engine.serialize())
|
316 |
+
return f, None
|
317 |
+
|
318 |
+
|
319 |
+
@try_export
|
320 |
+
def export_saved_model(model,
|
321 |
+
im,
|
322 |
+
file,
|
323 |
+
dynamic,
|
324 |
+
tf_nms=False,
|
325 |
+
agnostic_nms=False,
|
326 |
+
topk_per_class=100,
|
327 |
+
topk_all=100,
|
328 |
+
iou_thres=0.45,
|
329 |
+
conf_thres=0.25,
|
330 |
+
keras=False,
|
331 |
+
prefix=colorstr('TensorFlow SavedModel:')):
|
332 |
+
# YOLO TensorFlow SavedModel export
|
333 |
+
try:
|
334 |
+
import tensorflow as tf
|
335 |
+
except Exception:
|
336 |
+
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
337 |
+
import tensorflow as tf
|
338 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
339 |
+
|
340 |
+
from models.tf import TFModel
|
341 |
+
|
342 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
343 |
+
f = str(file).replace('.pt', '_saved_model')
|
344 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
345 |
+
|
346 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
347 |
+
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
348 |
+
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
349 |
+
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
350 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
351 |
+
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
352 |
+
keras_model.trainable = False
|
353 |
+
keras_model.summary()
|
354 |
+
if keras:
|
355 |
+
keras_model.save(f, save_format='tf')
|
356 |
+
else:
|
357 |
+
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
358 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
359 |
+
m = m.get_concrete_function(spec)
|
360 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
361 |
+
tfm = tf.Module()
|
362 |
+
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
363 |
+
tfm.__call__(im)
|
364 |
+
tf.saved_model.save(tfm,
|
365 |
+
f,
|
366 |
+
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
367 |
+
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
368 |
+
return f, keras_model
|
369 |
+
|
370 |
+
|
371 |
+
@try_export
|
372 |
+
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
373 |
+
# YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
374 |
+
import tensorflow as tf
|
375 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
376 |
+
|
377 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
378 |
+
f = file.with_suffix('.pb')
|
379 |
+
|
380 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
381 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
382 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
383 |
+
frozen_func.graph.as_graph_def()
|
384 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
385 |
+
return f, None
|
386 |
+
|
387 |
+
|
388 |
+
@try_export
|
389 |
+
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
390 |
+
# YOLOv5 TensorFlow Lite export
|
391 |
+
import tensorflow as tf
|
392 |
+
|
393 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
394 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
395 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
396 |
+
|
397 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
398 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
399 |
+
converter.target_spec.supported_types = [tf.float16]
|
400 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
401 |
+
if int8:
|
402 |
+
from models.tf import representative_dataset_gen
|
403 |
+
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
404 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
405 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
406 |
+
converter.target_spec.supported_types = []
|
407 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
408 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
409 |
+
converter.experimental_new_quantizer = True
|
410 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
411 |
+
if nms or agnostic_nms:
|
412 |
+
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
413 |
+
|
414 |
+
tflite_model = converter.convert()
|
415 |
+
open(f, "wb").write(tflite_model)
|
416 |
+
return f, None
|
417 |
+
|
418 |
+
|
419 |
+
@try_export
|
420 |
+
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
421 |
+
# YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
422 |
+
cmd = 'edgetpu_compiler --version'
|
423 |
+
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
424 |
+
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
425 |
+
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
426 |
+
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
427 |
+
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
428 |
+
for c in (
|
429 |
+
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
430 |
+
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
431 |
+
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
432 |
+
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
433 |
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
434 |
+
|
435 |
+
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
436 |
+
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
437 |
+
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
438 |
+
|
439 |
+
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
440 |
+
subprocess.run(cmd.split(), check=True)
|
441 |
+
return f, None
|
442 |
+
|
443 |
+
|
444 |
+
@try_export
|
445 |
+
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
446 |
+
# YOLO TensorFlow.js export
|
447 |
+
check_requirements('tensorflowjs')
|
448 |
+
import tensorflowjs as tfjs
|
449 |
+
|
450 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
451 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
452 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
453 |
+
f_json = f'{f}/model.json' # *.json path
|
454 |
+
|
455 |
+
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
456 |
+
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
457 |
+
subprocess.run(cmd.split())
|
458 |
+
|
459 |
+
json = Path(f_json).read_text()
|
460 |
+
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
461 |
+
subst = re.sub(
|
462 |
+
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
463 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
464 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
465 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
466 |
+
r'"Identity_1": {"name": "Identity_1"}, '
|
467 |
+
r'"Identity_2": {"name": "Identity_2"}, '
|
468 |
+
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
469 |
+
j.write(subst)
|
470 |
+
return f, None
|
471 |
+
|
472 |
+
|
473 |
+
def add_tflite_metadata(file, metadata, num_outputs):
|
474 |
+
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
475 |
+
with contextlib.suppress(ImportError):
|
476 |
+
# check_requirements('tflite_support')
|
477 |
+
from tflite_support import flatbuffers
|
478 |
+
from tflite_support import metadata as _metadata
|
479 |
+
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
480 |
+
|
481 |
+
tmp_file = Path('/tmp/meta.txt')
|
482 |
+
with open(tmp_file, 'w') as meta_f:
|
483 |
+
meta_f.write(str(metadata))
|
484 |
+
|
485 |
+
model_meta = _metadata_fb.ModelMetadataT()
|
486 |
+
label_file = _metadata_fb.AssociatedFileT()
|
487 |
+
label_file.name = tmp_file.name
|
488 |
+
model_meta.associatedFiles = [label_file]
|
489 |
+
|
490 |
+
subgraph = _metadata_fb.SubGraphMetadataT()
|
491 |
+
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
492 |
+
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
493 |
+
model_meta.subgraphMetadata = [subgraph]
|
494 |
+
|
495 |
+
b = flatbuffers.Builder(0)
|
496 |
+
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
497 |
+
metadata_buf = b.Output()
|
498 |
+
|
499 |
+
populator = _metadata.MetadataPopulator.with_model_file(file)
|
500 |
+
populator.load_metadata_buffer(metadata_buf)
|
501 |
+
populator.load_associated_files([str(tmp_file)])
|
502 |
+
populator.populate()
|
503 |
+
tmp_file.unlink()
|
504 |
+
|
505 |
+
|
506 |
+
@smart_inference_mode()
|
507 |
+
def run(
|
508 |
+
data=ROOT / 'data/coco.yaml', # 'dataset.yaml path'
|
509 |
+
weights=ROOT / 'yolo.pt', # weights path
|
510 |
+
imgsz=(640, 640), # image (height, width)
|
511 |
+
batch_size=1, # batch size
|
512 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
513 |
+
include=('torchscript', 'onnx'), # include formats
|
514 |
+
half=False, # FP16 half-precision export
|
515 |
+
inplace=False, # set YOLO Detect() inplace=True
|
516 |
+
keras=False, # use Keras
|
517 |
+
optimize=False, # TorchScript: optimize for mobile
|
518 |
+
int8=False, # CoreML/TF INT8 quantization
|
519 |
+
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
520 |
+
simplify=False, # ONNX: simplify model
|
521 |
+
opset=12, # ONNX: opset version
|
522 |
+
verbose=False, # TensorRT: verbose log
|
523 |
+
workspace=4, # TensorRT: workspace size (GB)
|
524 |
+
nms=False, # TF: add NMS to model
|
525 |
+
agnostic_nms=False, # TF: add agnostic NMS to model
|
526 |
+
topk_per_class=100, # TF.js NMS: topk per class to keep
|
527 |
+
topk_all=100, # TF.js NMS: topk for all classes to keep
|
528 |
+
iou_thres=0.45, # TF.js NMS: IoU threshold
|
529 |
+
conf_thres=0.25, # TF.js NMS: confidence threshold
|
530 |
+
):
|
531 |
+
t = time.time()
|
532 |
+
include = [x.lower() for x in include] # to lowercase
|
533 |
+
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
534 |
+
flags = [x in include for x in fmts]
|
535 |
+
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
536 |
+
jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
537 |
+
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
538 |
+
|
539 |
+
# Load PyTorch model
|
540 |
+
device = select_device(device)
|
541 |
+
if half:
|
542 |
+
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
543 |
+
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
544 |
+
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
545 |
+
|
546 |
+
# Checks
|
547 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
548 |
+
if optimize:
|
549 |
+
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
550 |
+
|
551 |
+
# Input
|
552 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
553 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
554 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
555 |
+
|
556 |
+
# Update model
|
557 |
+
model.eval()
|
558 |
+
for k, m in model.named_modules():
|
559 |
+
if isinstance(m, (Detect, DDetect, DualDetect, DualDDetect)):
|
560 |
+
m.inplace = inplace
|
561 |
+
m.dynamic = dynamic
|
562 |
+
m.export = True
|
563 |
+
|
564 |
+
for _ in range(2):
|
565 |
+
y = model(im) # dry runs
|
566 |
+
if half and not coreml:
|
567 |
+
im, model = im.half(), model.half() # to FP16
|
568 |
+
shape = tuple((y[0] if isinstance(y, (tuple, list)) else y).shape) # model output shape
|
569 |
+
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
570 |
+
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
571 |
+
|
572 |
+
# Exports
|
573 |
+
f = [''] * len(fmts) # exported filenames
|
574 |
+
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
575 |
+
if jit: # TorchScript
|
576 |
+
f[0], _ = export_torchscript(model, im, file, optimize)
|
577 |
+
if engine: # TensorRT required before ONNX
|
578 |
+
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
579 |
+
if onnx or xml: # OpenVINO requires ONNX
|
580 |
+
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
581 |
+
if onnx_end2end:
|
582 |
+
if isinstance(model, DetectionModel):
|
583 |
+
labels = model.names
|
584 |
+
f[2], _ = export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, len(labels))
|
585 |
+
else:
|
586 |
+
raise RuntimeError("The model is not a DetectionModel.")
|
587 |
+
if xml: # OpenVINO
|
588 |
+
f[3], _ = export_openvino(file, metadata, half)
|
589 |
+
if coreml: # CoreML
|
590 |
+
f[4], _ = export_coreml(model, im, file, int8, half)
|
591 |
+
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
592 |
+
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
593 |
+
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
594 |
+
f[5], s_model = export_saved_model(model.cpu(),
|
595 |
+
im,
|
596 |
+
file,
|
597 |
+
dynamic,
|
598 |
+
tf_nms=nms or agnostic_nms or tfjs,
|
599 |
+
agnostic_nms=agnostic_nms or tfjs,
|
600 |
+
topk_per_class=topk_per_class,
|
601 |
+
topk_all=topk_all,
|
602 |
+
iou_thres=iou_thres,
|
603 |
+
conf_thres=conf_thres,
|
604 |
+
keras=keras)
|
605 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
606 |
+
f[6], _ = export_pb(s_model, file)
|
607 |
+
if tflite or edgetpu:
|
608 |
+
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
609 |
+
if edgetpu:
|
610 |
+
f[8], _ = export_edgetpu(file)
|
611 |
+
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
612 |
+
if tfjs:
|
613 |
+
f[9], _ = export_tfjs(file)
|
614 |
+
if paddle: # PaddlePaddle
|
615 |
+
f[10], _ = export_paddle(model, im, file, metadata)
|
616 |
+
|
617 |
+
# Finish
|
618 |
+
f = [str(x) for x in f if x] # filter out '' and None
|
619 |
+
if any(f):
|
620 |
+
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
621 |
+
dir = Path('segment' if seg else 'classify' if cls else '')
|
622 |
+
h = '--half' if half else '' # --half FP16 inference arg
|
623 |
+
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
|
624 |
+
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
|
625 |
+
if onnx_end2end:
|
626 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
627 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
628 |
+
f"\nVisualize: https://netron.app")
|
629 |
+
else:
|
630 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
631 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
632 |
+
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
633 |
+
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
634 |
+
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
635 |
+
f"\nVisualize: https://netron.app")
|
636 |
+
return f # return list of exported files/dirs
|
637 |
+
|
638 |
+
|
639 |
+
def parse_opt():
|
640 |
+
parser = argparse.ArgumentParser()
|
641 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
642 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model.pt path(s)')
|
643 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
644 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
645 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
646 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
647 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLO Detect() inplace=True')
|
648 |
+
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
649 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
650 |
+
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
651 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
|
652 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
653 |
+
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
|
654 |
+
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
655 |
+
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
656 |
+
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
657 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
658 |
+
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
659 |
+
parser.add_argument('--topk-all', type=int, default=100, help='ONNX END2END/TF.js NMS: topk for all classes to keep')
|
660 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='ONNX END2END/TF.js NMS: IoU threshold')
|
661 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='ONNX END2END/TF.js NMS: confidence threshold')
|
662 |
+
parser.add_argument(
|
663 |
+
'--include',
|
664 |
+
nargs='+',
|
665 |
+
default=['torchscript'],
|
666 |
+
help='torchscript, onnx, onnx_end2end, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
|
667 |
+
opt = parser.parse_args()
|
668 |
+
|
669 |
+
if 'onnx_end2end' in opt.include:
|
670 |
+
opt.simplify = True
|
671 |
+
opt.dynamic = True
|
672 |
+
opt.inplace = True
|
673 |
+
opt.half = False
|
674 |
+
|
675 |
+
print_args(vars(opt))
|
676 |
+
return opt
|
677 |
+
|
678 |
+
|
679 |
+
def main(opt):
|
680 |
+
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
681 |
+
run(**vars(opt))
|
682 |
+
|
683 |
+
|
684 |
+
if __name__ == "__main__":
|
685 |
+
opt = parse_opt()
|
686 |
+
main(opt)
|
hubconf.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
5 |
+
"""Creates or loads a YOLO model
|
6 |
+
|
7 |
+
Arguments:
|
8 |
+
name (str): model name 'yolov3' or path 'path/to/best.pt'
|
9 |
+
pretrained (bool): load pretrained weights into the model
|
10 |
+
channels (int): number of input channels
|
11 |
+
classes (int): number of model classes
|
12 |
+
autoshape (bool): apply YOLO .autoshape() wrapper to model
|
13 |
+
verbose (bool): print all information to screen
|
14 |
+
device (str, torch.device, None): device to use for model parameters
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
YOLO model
|
18 |
+
"""
|
19 |
+
from pathlib import Path
|
20 |
+
|
21 |
+
from models.common import AutoShape, DetectMultiBackend
|
22 |
+
from models.experimental import attempt_load
|
23 |
+
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
|
24 |
+
from utils.downloads import attempt_download
|
25 |
+
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
|
26 |
+
from utils.torch_utils import select_device
|
27 |
+
|
28 |
+
if not verbose:
|
29 |
+
LOGGER.setLevel(logging.WARNING)
|
30 |
+
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
|
31 |
+
name = Path(name)
|
32 |
+
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
|
33 |
+
try:
|
34 |
+
device = select_device(device)
|
35 |
+
if pretrained and channels == 3 and classes == 80:
|
36 |
+
try:
|
37 |
+
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
|
38 |
+
if autoshape:
|
39 |
+
if model.pt and isinstance(model.model, ClassificationModel):
|
40 |
+
LOGGER.warning('WARNING ⚠️ YOLO ClassificationModel is not yet AutoShape compatible. '
|
41 |
+
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
|
42 |
+
elif model.pt and isinstance(model.model, SegmentationModel):
|
43 |
+
LOGGER.warning('WARNING ⚠️ YOLO SegmentationModel is not yet AutoShape compatible. '
|
44 |
+
'You will not be able to run inference with this model.')
|
45 |
+
else:
|
46 |
+
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
47 |
+
except Exception:
|
48 |
+
model = attempt_load(path, device=device, fuse=False) # arbitrary model
|
49 |
+
else:
|
50 |
+
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
|
51 |
+
model = DetectionModel(cfg, channels, classes) # create model
|
52 |
+
if pretrained:
|
53 |
+
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
54 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
55 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
56 |
+
model.load_state_dict(csd, strict=False) # load
|
57 |
+
if len(ckpt['model'].names) == classes:
|
58 |
+
model.names = ckpt['model'].names # set class names attribute
|
59 |
+
if not verbose:
|
60 |
+
LOGGER.setLevel(logging.INFO) # reset to default
|
61 |
+
return model.to(device)
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
65 |
+
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
|
66 |
+
raise Exception(s) from e
|
67 |
+
|
68 |
+
|
69 |
+
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
|
70 |
+
# YOLO custom or local model
|
71 |
+
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == '__main__':
|
75 |
+
import argparse
|
76 |
+
from pathlib import Path
|
77 |
+
|
78 |
+
import numpy as np
|
79 |
+
from PIL import Image
|
80 |
+
|
81 |
+
from utils.general import cv2, print_args
|
82 |
+
|
83 |
+
# Argparser
|
84 |
+
parser = argparse.ArgumentParser()
|
85 |
+
parser.add_argument('--model', type=str, default='yolo', help='model name')
|
86 |
+
opt = parser.parse_args()
|
87 |
+
print_args(vars(opt))
|
88 |
+
|
89 |
+
# Model
|
90 |
+
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
|
91 |
+
# model = custom(path='path/to/model.pt') # custom
|
92 |
+
|
93 |
+
# Images
|
94 |
+
imgs = [
|
95 |
+
'data/images/zidane.jpg', # filename
|
96 |
+
Path('data/images/zidane.jpg'), # Path
|
97 |
+
'https://ultralytics.com/images/zidane.jpg', # URI
|
98 |
+
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
99 |
+
Image.open('data/images/bus.jpg'), # PIL
|
100 |
+
np.zeros((320, 640, 3))] # numpy
|
101 |
+
|
102 |
+
# Inference
|
103 |
+
results = model(imgs, size=320) # batched inference
|
104 |
+
|
105 |
+
# Results
|
106 |
+
results.print()
|
107 |
+
results.save()
|
requirements.txt
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# requirements
|
2 |
+
# Usage: pip install -r requirements.txt
|
3 |
+
|
4 |
+
# Base ------------------------------------------------------------------------
|
5 |
+
gitpython
|
6 |
+
ipython
|
7 |
+
matplotlib>=3.2.2
|
8 |
+
numpy>=1.18.5
|
9 |
+
opencv-python>=4.1.1
|
10 |
+
Pillow>=7.1.2
|
11 |
+
psutil
|
12 |
+
PyYAML>=5.3.1
|
13 |
+
requests>=2.23.0
|
14 |
+
scipy>=1.4.1
|
15 |
+
thop>=0.1.1
|
16 |
+
torch>=1.7.0
|
17 |
+
torchvision>=0.8.1
|
18 |
+
tqdm>=4.64.0
|
19 |
+
# protobuf<=3.20.1
|
20 |
+
|
21 |
+
# Logging ---------------------------------------------------------------------
|
22 |
+
tensorboard>=2.4.1
|
23 |
+
# clearml>=1.2.0
|
24 |
+
# comet
|
25 |
+
|
26 |
+
# Plotting --------------------------------------------------------------------
|
27 |
+
pandas>=1.1.4
|
28 |
+
seaborn>=0.11.0
|
29 |
+
|
30 |
+
# Export ----------------------------------------------------------------------
|
31 |
+
# coremltools>=6.0
|
32 |
+
# onnx>=1.9.0
|
33 |
+
# onnx-simplifier>=0.4.1
|
34 |
+
# nvidia-pyindex
|
35 |
+
# nvidia-tensorrt
|
36 |
+
# scikit-learn<=1.1.2
|
37 |
+
# tensorflow>=2.4.1
|
38 |
+
# tensorflowjs>=3.9.0
|
39 |
+
# openvino-dev
|
40 |
+
|
41 |
+
# Deploy ----------------------------------------------------------------------
|
42 |
+
# tritonclient[all]~=2.24.0
|
43 |
+
|
44 |
+
# Extras ----------------------------------------------------------------------
|
45 |
+
# mss
|
46 |
+
albumentations>=1.0.3
|
47 |
+
pycocotools>=2.0
|
test.mp4
ADDED
Binary file (944 kB). View file
|
|
train.py
ADDED
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
from copy import deepcopy
|
8 |
+
from datetime import datetime
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.distributed as dist
|
14 |
+
import torch.nn as nn
|
15 |
+
import yaml
|
16 |
+
from torch.optim import lr_scheduler
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
FILE = Path(__file__).resolve()
|
20 |
+
ROOT = FILE.parents[0] # root directory
|
21 |
+
if str(ROOT) not in sys.path:
|
22 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
23 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
24 |
+
|
25 |
+
import val as validate # for end-of-epoch mAP
|
26 |
+
from models.experimental import attempt_load
|
27 |
+
from models.yolo import Model
|
28 |
+
from utils.autoanchor import check_anchors
|
29 |
+
from utils.autobatch import check_train_batch_size
|
30 |
+
from utils.callbacks import Callbacks
|
31 |
+
from utils.dataloaders import create_dataloader
|
32 |
+
from utils.downloads import attempt_download, is_url
|
33 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_img_size,
|
34 |
+
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
|
35 |
+
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
|
36 |
+
one_cycle, one_flat_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
|
37 |
+
from utils.loggers import Loggers
|
38 |
+
from utils.loggers.comet.comet_utils import check_comet_resume
|
39 |
+
from utils.loss_tal import ComputeLoss
|
40 |
+
from utils.metrics import fitness
|
41 |
+
from utils.plots import plot_evolve
|
42 |
+
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP,
|
43 |
+
smart_optimizer, smart_resume, torch_distributed_zero_first)
|
44 |
+
|
45 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
46 |
+
RANK = int(os.getenv('RANK', -1))
|
47 |
+
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
48 |
+
GIT_INFO = None
|
49 |
+
|
50 |
+
|
51 |
+
def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
|
52 |
+
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
|
53 |
+
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
54 |
+
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
55 |
+
callbacks.run('on_pretrain_routine_start')
|
56 |
+
|
57 |
+
# Directories
|
58 |
+
w = save_dir / 'weights' # weights dir
|
59 |
+
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
|
60 |
+
last, best = w / 'last.pt', w / 'best.pt'
|
61 |
+
last_striped, best_striped = w / 'last_striped.pt', w / 'best_striped.pt'
|
62 |
+
|
63 |
+
# Hyperparameters
|
64 |
+
if isinstance(hyp, str):
|
65 |
+
with open(hyp, errors='ignore') as f:
|
66 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
67 |
+
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
68 |
+
hyp['anchor_t'] = 5.0
|
69 |
+
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
70 |
+
|
71 |
+
# Save run settings
|
72 |
+
if not evolve:
|
73 |
+
yaml_save(save_dir / 'hyp.yaml', hyp)
|
74 |
+
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
75 |
+
|
76 |
+
# Loggers
|
77 |
+
data_dict = None
|
78 |
+
if RANK in {-1, 0}:
|
79 |
+
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
80 |
+
|
81 |
+
# Register actions
|
82 |
+
for k in methods(loggers):
|
83 |
+
callbacks.register_action(k, callback=getattr(loggers, k))
|
84 |
+
|
85 |
+
# Process custom dataset artifact link
|
86 |
+
data_dict = loggers.remote_dataset
|
87 |
+
if resume: # If resuming runs from remote artifact
|
88 |
+
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
|
89 |
+
|
90 |
+
# Config
|
91 |
+
plots = not evolve and not opt.noplots # create plots
|
92 |
+
cuda = device.type != 'cpu'
|
93 |
+
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
94 |
+
with torch_distributed_zero_first(LOCAL_RANK):
|
95 |
+
data_dict = data_dict or check_dataset(data) # check if None
|
96 |
+
train_path, val_path = data_dict['train'], data_dict['val']
|
97 |
+
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
98 |
+
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
99 |
+
#is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
|
100 |
+
is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
|
101 |
+
|
102 |
+
# Model
|
103 |
+
check_suffix(weights, '.pt') # check weights
|
104 |
+
pretrained = weights.endswith('.pt')
|
105 |
+
if pretrained:
|
106 |
+
with torch_distributed_zero_first(LOCAL_RANK):
|
107 |
+
weights = attempt_download(weights) # download if not found locally
|
108 |
+
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
109 |
+
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
110 |
+
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
111 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
112 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
113 |
+
model.load_state_dict(csd, strict=False) # load
|
114 |
+
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
115 |
+
else:
|
116 |
+
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
117 |
+
amp = check_amp(model) # check AMP
|
118 |
+
|
119 |
+
# Freeze
|
120 |
+
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
121 |
+
for k, v in model.named_parameters():
|
122 |
+
# v.requires_grad = True # train all layers TODO: uncomment this line as in master
|
123 |
+
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
124 |
+
if any(x in k for x in freeze):
|
125 |
+
LOGGER.info(f'freezing {k}')
|
126 |
+
v.requires_grad = False
|
127 |
+
|
128 |
+
# Image size
|
129 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
130 |
+
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
131 |
+
|
132 |
+
# Batch size
|
133 |
+
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
134 |
+
batch_size = check_train_batch_size(model, imgsz, amp)
|
135 |
+
loggers.on_params_update({"batch_size": batch_size})
|
136 |
+
|
137 |
+
# Optimizer
|
138 |
+
nbs = 64 # nominal batch size
|
139 |
+
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
140 |
+
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
141 |
+
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
|
142 |
+
|
143 |
+
# Scheduler
|
144 |
+
if opt.cos_lr:
|
145 |
+
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
146 |
+
elif opt.flat_cos_lr:
|
147 |
+
lf = one_flat_cycle(1, hyp['lrf'], epochs) # flat cosine 1->hyp['lrf']
|
148 |
+
elif opt.fixed_lr:
|
149 |
+
lf = lambda x: 1.0
|
150 |
+
else:
|
151 |
+
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
152 |
+
|
153 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
154 |
+
# from utils.plots import plot_lr_scheduler; plot_lr_scheduler(optimizer, scheduler, epochs)
|
155 |
+
|
156 |
+
# EMA
|
157 |
+
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
158 |
+
|
159 |
+
# Resume
|
160 |
+
best_fitness, start_epoch = 0.0, 0
|
161 |
+
if pretrained:
|
162 |
+
if resume:
|
163 |
+
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
164 |
+
del ckpt, csd
|
165 |
+
|
166 |
+
# DP mode
|
167 |
+
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
168 |
+
LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
|
169 |
+
model = torch.nn.DataParallel(model)
|
170 |
+
|
171 |
+
# SyncBatchNorm
|
172 |
+
if opt.sync_bn and cuda and RANK != -1:
|
173 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
174 |
+
LOGGER.info('Using SyncBatchNorm()')
|
175 |
+
|
176 |
+
# Trainloader
|
177 |
+
train_loader, dataset = create_dataloader(train_path,
|
178 |
+
imgsz,
|
179 |
+
batch_size // WORLD_SIZE,
|
180 |
+
gs,
|
181 |
+
single_cls,
|
182 |
+
hyp=hyp,
|
183 |
+
augment=True,
|
184 |
+
cache=None if opt.cache == 'val' else opt.cache,
|
185 |
+
rect=opt.rect,
|
186 |
+
rank=LOCAL_RANK,
|
187 |
+
workers=workers,
|
188 |
+
image_weights=opt.image_weights,
|
189 |
+
close_mosaic=opt.close_mosaic != 0,
|
190 |
+
quad=opt.quad,
|
191 |
+
prefix=colorstr('train: '),
|
192 |
+
shuffle=True,
|
193 |
+
min_items=opt.min_items)
|
194 |
+
labels = np.concatenate(dataset.labels, 0)
|
195 |
+
mlc = int(labels[:, 0].max()) # max label class
|
196 |
+
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
197 |
+
|
198 |
+
# Process 0
|
199 |
+
if RANK in {-1, 0}:
|
200 |
+
val_loader = create_dataloader(val_path,
|
201 |
+
imgsz,
|
202 |
+
batch_size // WORLD_SIZE * 2,
|
203 |
+
gs,
|
204 |
+
single_cls,
|
205 |
+
hyp=hyp,
|
206 |
+
cache=None if noval else opt.cache,
|
207 |
+
rect=True,
|
208 |
+
rank=-1,
|
209 |
+
workers=workers * 2,
|
210 |
+
pad=0.5,
|
211 |
+
prefix=colorstr('val: '))[0]
|
212 |
+
|
213 |
+
if not resume:
|
214 |
+
# if not opt.noautoanchor:
|
215 |
+
# check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
|
216 |
+
model.half().float() # pre-reduce anchor precision
|
217 |
+
|
218 |
+
callbacks.run('on_pretrain_routine_end', labels, names)
|
219 |
+
|
220 |
+
# DDP mode
|
221 |
+
if cuda and RANK != -1:
|
222 |
+
model = smart_DDP(model)
|
223 |
+
|
224 |
+
# Model attributes
|
225 |
+
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
226 |
+
#hyp['box'] *= 3 / nl # scale to layers
|
227 |
+
#hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
|
228 |
+
#hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
229 |
+
hyp['label_smoothing'] = opt.label_smoothing
|
230 |
+
model.nc = nc # attach number of classes to model
|
231 |
+
model.hyp = hyp # attach hyperparameters to model
|
232 |
+
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
233 |
+
model.names = names
|
234 |
+
|
235 |
+
# Start training
|
236 |
+
t0 = time.time()
|
237 |
+
nb = len(train_loader) # number of batches
|
238 |
+
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
239 |
+
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
240 |
+
last_opt_step = -1
|
241 |
+
maps = np.zeros(nc) # mAP per class
|
242 |
+
results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls)
|
243 |
+
scheduler.last_epoch = start_epoch - 1 # do not move
|
244 |
+
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
245 |
+
stopper, stop = EarlyStopping(patience=opt.patience), False
|
246 |
+
compute_loss = ComputeLoss(model) # init loss class
|
247 |
+
callbacks.run('on_train_start')
|
248 |
+
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
249 |
+
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
250 |
+
f"Logging results to {colorstr('bold', save_dir)}\n"
|
251 |
+
f'Starting training for {epochs} epochs...')
|
252 |
+
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
253 |
+
callbacks.run('on_train_epoch_start')
|
254 |
+
model.train()
|
255 |
+
|
256 |
+
# Update image weights (optional, single-GPU only)
|
257 |
+
if opt.image_weights:
|
258 |
+
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
259 |
+
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
260 |
+
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
261 |
+
if epoch == (epochs - opt.close_mosaic):
|
262 |
+
LOGGER.info("Closing dataloader mosaic")
|
263 |
+
dataset.mosaic = False
|
264 |
+
|
265 |
+
# Update mosaic border (optional)
|
266 |
+
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
267 |
+
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
268 |
+
|
269 |
+
mloss = torch.zeros(3, device=device) # mean losses
|
270 |
+
if RANK != -1:
|
271 |
+
train_loader.sampler.set_epoch(epoch)
|
272 |
+
pbar = enumerate(train_loader)
|
273 |
+
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
|
274 |
+
if RANK in {-1, 0}:
|
275 |
+
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
276 |
+
optimizer.zero_grad()
|
277 |
+
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
278 |
+
callbacks.run('on_train_batch_start')
|
279 |
+
ni = i + nb * epoch # number integrated batches (since train start)
|
280 |
+
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
281 |
+
|
282 |
+
# Warmup
|
283 |
+
if ni <= nw:
|
284 |
+
xi = [0, nw] # x interp
|
285 |
+
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
286 |
+
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
287 |
+
for j, x in enumerate(optimizer.param_groups):
|
288 |
+
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
289 |
+
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
|
290 |
+
if 'momentum' in x:
|
291 |
+
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
292 |
+
|
293 |
+
# Multi-scale
|
294 |
+
if opt.multi_scale:
|
295 |
+
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
296 |
+
sf = sz / max(imgs.shape[2:]) # scale factor
|
297 |
+
if sf != 1:
|
298 |
+
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
299 |
+
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
300 |
+
|
301 |
+
# Forward
|
302 |
+
with torch.cuda.amp.autocast(amp):
|
303 |
+
pred = model(imgs) # forward
|
304 |
+
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
305 |
+
if RANK != -1:
|
306 |
+
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
307 |
+
if opt.quad:
|
308 |
+
loss *= 4.
|
309 |
+
|
310 |
+
# Backward
|
311 |
+
scaler.scale(loss).backward()
|
312 |
+
|
313 |
+
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
314 |
+
if ni - last_opt_step >= accumulate:
|
315 |
+
scaler.unscale_(optimizer) # unscale gradients
|
316 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
317 |
+
scaler.step(optimizer) # optimizer.step
|
318 |
+
scaler.update()
|
319 |
+
optimizer.zero_grad()
|
320 |
+
if ema:
|
321 |
+
ema.update(model)
|
322 |
+
last_opt_step = ni
|
323 |
+
|
324 |
+
# Log
|
325 |
+
if RANK in {-1, 0}:
|
326 |
+
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
327 |
+
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
328 |
+
pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
|
329 |
+
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
330 |
+
callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
|
331 |
+
if callbacks.stop_training:
|
332 |
+
return
|
333 |
+
# end batch ------------------------------------------------------------------------------------------------
|
334 |
+
|
335 |
+
# Scheduler
|
336 |
+
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
337 |
+
scheduler.step()
|
338 |
+
|
339 |
+
if RANK in {-1, 0}:
|
340 |
+
# mAP
|
341 |
+
callbacks.run('on_train_epoch_end', epoch=epoch)
|
342 |
+
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
343 |
+
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
344 |
+
if not noval or final_epoch: # Calculate mAP
|
345 |
+
results, maps, _ = validate.run(data_dict,
|
346 |
+
batch_size=batch_size // WORLD_SIZE * 2,
|
347 |
+
imgsz=imgsz,
|
348 |
+
half=amp,
|
349 |
+
model=ema.ema,
|
350 |
+
single_cls=single_cls,
|
351 |
+
dataloader=val_loader,
|
352 |
+
save_dir=save_dir,
|
353 |
+
plots=False,
|
354 |
+
callbacks=callbacks,
|
355 |
+
compute_loss=compute_loss)
|
356 |
+
|
357 |
+
# Update best mAP
|
358 |
+
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]]
|
359 |
+
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
360 |
+
if fi > best_fitness:
|
361 |
+
best_fitness = fi
|
362 |
+
log_vals = list(mloss) + list(results) + lr
|
363 |
+
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
|
364 |
+
|
365 |
+
# Save model
|
366 |
+
if (not nosave) or (final_epoch and not evolve): # if save
|
367 |
+
ckpt = {
|
368 |
+
'epoch': epoch,
|
369 |
+
'best_fitness': best_fitness,
|
370 |
+
'model': deepcopy(de_parallel(model)).half(),
|
371 |
+
'ema': deepcopy(ema.ema).half(),
|
372 |
+
'updates': ema.updates,
|
373 |
+
'optimizer': optimizer.state_dict(),
|
374 |
+
'opt': vars(opt),
|
375 |
+
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
376 |
+
'date': datetime.now().isoformat()}
|
377 |
+
|
378 |
+
# Save last, best and delete
|
379 |
+
torch.save(ckpt, last)
|
380 |
+
if best_fitness == fi:
|
381 |
+
torch.save(ckpt, best)
|
382 |
+
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
383 |
+
torch.save(ckpt, w / f'epoch{epoch}.pt')
|
384 |
+
del ckpt
|
385 |
+
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
386 |
+
|
387 |
+
# EarlyStopping
|
388 |
+
if RANK != -1: # if DDP training
|
389 |
+
broadcast_list = [stop if RANK == 0 else None]
|
390 |
+
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
391 |
+
if RANK != 0:
|
392 |
+
stop = broadcast_list[0]
|
393 |
+
if stop:
|
394 |
+
break # must break all DDP ranks
|
395 |
+
|
396 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
397 |
+
# end training -----------------------------------------------------------------------------------------------------
|
398 |
+
if RANK in {-1, 0}:
|
399 |
+
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
400 |
+
for f in last, best:
|
401 |
+
if f.exists():
|
402 |
+
if f is last:
|
403 |
+
strip_optimizer(f, last_striped) # strip optimizers
|
404 |
+
else:
|
405 |
+
strip_optimizer(f, best_striped) # strip optimizers
|
406 |
+
if f is best:
|
407 |
+
LOGGER.info(f'\nValidating {f}...')
|
408 |
+
results, _, _ = validate.run(
|
409 |
+
data_dict,
|
410 |
+
batch_size=batch_size // WORLD_SIZE * 2,
|
411 |
+
imgsz=imgsz,
|
412 |
+
model=attempt_load(f, device).half(),
|
413 |
+
single_cls=single_cls,
|
414 |
+
dataloader=val_loader,
|
415 |
+
save_dir=save_dir,
|
416 |
+
save_json=is_coco,
|
417 |
+
verbose=True,
|
418 |
+
plots=plots,
|
419 |
+
callbacks=callbacks,
|
420 |
+
compute_loss=compute_loss) # val best model with plots
|
421 |
+
if is_coco:
|
422 |
+
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
423 |
+
|
424 |
+
callbacks.run('on_train_end', last, best, epoch, results)
|
425 |
+
|
426 |
+
torch.cuda.empty_cache()
|
427 |
+
return results
|
428 |
+
|
429 |
+
|
430 |
+
def parse_opt(known=False):
|
431 |
+
parser = argparse.ArgumentParser()
|
432 |
+
# parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
|
433 |
+
# parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
434 |
+
parser.add_argument('--weights', type=str, default='', help='initial weights path')
|
435 |
+
parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml path')
|
436 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
437 |
+
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
|
438 |
+
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
|
439 |
+
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
440 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
441 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
442 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
443 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
444 |
+
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
445 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
446 |
+
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
447 |
+
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
448 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
449 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
|
450 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
451 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
452 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
453 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
454 |
+
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
|
455 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
456 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
457 |
+
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
458 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
459 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
460 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
461 |
+
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
462 |
+
parser.add_argument('--flat-cos-lr', action='store_true', help='flat cosine LR scheduler')
|
463 |
+
parser.add_argument('--fixed-lr', action='store_true', help='fixed LR scheduler')
|
464 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
465 |
+
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
466 |
+
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
467 |
+
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
468 |
+
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
469 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
470 |
+
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
|
471 |
+
parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
|
472 |
+
|
473 |
+
# Logger arguments
|
474 |
+
parser.add_argument('--entity', default=None, help='Entity')
|
475 |
+
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
|
476 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
|
477 |
+
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
|
478 |
+
|
479 |
+
return parser.parse_known_args()[0] if known else parser.parse_args()
|
480 |
+
|
481 |
+
|
482 |
+
def main(opt, callbacks=Callbacks()):
|
483 |
+
# Checks
|
484 |
+
if RANK in {-1, 0}:
|
485 |
+
print_args(vars(opt))
|
486 |
+
|
487 |
+
# Resume (from specified or most recent last.pt)
|
488 |
+
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
|
489 |
+
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
490 |
+
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
|
491 |
+
opt_data = opt.data # original dataset
|
492 |
+
if opt_yaml.is_file():
|
493 |
+
with open(opt_yaml, errors='ignore') as f:
|
494 |
+
d = yaml.safe_load(f)
|
495 |
+
else:
|
496 |
+
d = torch.load(last, map_location='cpu')['opt']
|
497 |
+
opt = argparse.Namespace(**d) # replace
|
498 |
+
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
|
499 |
+
if is_url(opt_data):
|
500 |
+
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
501 |
+
else:
|
502 |
+
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
|
503 |
+
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
|
504 |
+
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
505 |
+
if opt.evolve:
|
506 |
+
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
|
507 |
+
opt.project = str(ROOT / 'runs/evolve')
|
508 |
+
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
509 |
+
if opt.name == 'cfg':
|
510 |
+
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
511 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
512 |
+
|
513 |
+
# DDP mode
|
514 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
515 |
+
if LOCAL_RANK != -1:
|
516 |
+
msg = 'is not compatible with YOLO Multi-GPU DDP training'
|
517 |
+
assert not opt.image_weights, f'--image-weights {msg}'
|
518 |
+
assert not opt.evolve, f'--evolve {msg}'
|
519 |
+
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
|
520 |
+
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
521 |
+
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
522 |
+
torch.cuda.set_device(LOCAL_RANK)
|
523 |
+
device = torch.device('cuda', LOCAL_RANK)
|
524 |
+
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
525 |
+
|
526 |
+
# Train
|
527 |
+
if not opt.evolve:
|
528 |
+
train(opt.hyp, opt, device, callbacks)
|
529 |
+
|
530 |
+
# Evolve hyperparameters (optional)
|
531 |
+
else:
|
532 |
+
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
533 |
+
meta = {
|
534 |
+
'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
535 |
+
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
536 |
+
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
537 |
+
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
538 |
+
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
539 |
+
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
540 |
+
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
541 |
+
'box': (1, 0.02, 0.2), # box loss gain
|
542 |
+
'cls': (1, 0.2, 4.0), # cls loss gain
|
543 |
+
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
544 |
+
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
545 |
+
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
546 |
+
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
547 |
+
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
548 |
+
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
549 |
+
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
550 |
+
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
551 |
+
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
552 |
+
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
553 |
+
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
554 |
+
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
555 |
+
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
556 |
+
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
557 |
+
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
558 |
+
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
559 |
+
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
560 |
+
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
561 |
+
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
562 |
+
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
563 |
+
|
564 |
+
with open(opt.hyp, errors='ignore') as f:
|
565 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
566 |
+
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
567 |
+
hyp['anchors'] = 3
|
568 |
+
if opt.noautoanchor:
|
569 |
+
del hyp['anchors'], meta['anchors']
|
570 |
+
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
571 |
+
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
572 |
+
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
573 |
+
if opt.bucket:
|
574 |
+
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
|
575 |
+
|
576 |
+
for _ in range(opt.evolve): # generations to evolve
|
577 |
+
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
578 |
+
# Select parent(s)
|
579 |
+
parent = 'single' # parent selection method: 'single' or 'weighted'
|
580 |
+
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
581 |
+
n = min(5, len(x)) # number of previous results to consider
|
582 |
+
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
583 |
+
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
|
584 |
+
if parent == 'single' or len(x) == 1:
|
585 |
+
# x = x[random.randint(0, n - 1)] # random selection
|
586 |
+
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
587 |
+
elif parent == 'weighted':
|
588 |
+
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
589 |
+
|
590 |
+
# Mutate
|
591 |
+
mp, s = 0.8, 0.2 # mutation probability, sigma
|
592 |
+
npr = np.random
|
593 |
+
npr.seed(int(time.time()))
|
594 |
+
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
|
595 |
+
ng = len(meta)
|
596 |
+
v = np.ones(ng)
|
597 |
+
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
598 |
+
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
599 |
+
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
600 |
+
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
601 |
+
|
602 |
+
# Constrain to limits
|
603 |
+
for k, v in meta.items():
|
604 |
+
hyp[k] = max(hyp[k], v[1]) # lower limit
|
605 |
+
hyp[k] = min(hyp[k], v[2]) # upper limit
|
606 |
+
hyp[k] = round(hyp[k], 5) # significant digits
|
607 |
+
|
608 |
+
# Train mutation
|
609 |
+
results = train(hyp.copy(), opt, device, callbacks)
|
610 |
+
callbacks = Callbacks()
|
611 |
+
# Write mutation results
|
612 |
+
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
|
613 |
+
'val/obj_loss', 'val/cls_loss')
|
614 |
+
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
|
615 |
+
|
616 |
+
# Plot results
|
617 |
+
plot_evolve(evolve_csv)
|
618 |
+
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
619 |
+
f"Results saved to {colorstr('bold', save_dir)}\n"
|
620 |
+
f'Usage example: $ python train.py --hyp {evolve_yaml}')
|
621 |
+
|
622 |
+
|
623 |
+
def run(**kwargs):
|
624 |
+
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
|
625 |
+
opt = parse_opt(True)
|
626 |
+
for k, v in kwargs.items():
|
627 |
+
setattr(opt, k, v)
|
628 |
+
main(opt)
|
629 |
+
return opt
|
630 |
+
|
631 |
+
|
632 |
+
if __name__ == "__main__":
|
633 |
+
opt = parse_opt()
|
634 |
+
main(opt)
|