Delete README.md
Browse files
README.md
DELETED
@@ -1,329 +0,0 @@
|
|
1 |
-
# YOLOv9
|
2 |
-
|
3 |
-
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
|
4 |
-
|
5 |
-
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616)
|
6 |
-
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9)
|
7 |
-
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9)
|
8 |
-
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
|
9 |
-
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
|
10 |
-
|
11 |
-
<div align="center">
|
12 |
-
<a href="./">
|
13 |
-
<img src="./figure/performance.png" width="79%"/>
|
14 |
-
</a>
|
15 |
-
</div>
|
16 |
-
|
17 |
-
|
18 |
-
## Performance
|
19 |
-
|
20 |
-
MS COCO
|
21 |
-
|
22 |
-
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
23 |
-
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
24 |
-
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
|
25 |
-
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
|
26 |
-
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
|
27 |
-
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
|
28 |
-
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
29 |
-
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
|
30 |
-
|
31 |
-
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
|
32 |
-
|
33 |
-
## Useful Links
|
34 |
-
|
35 |
-
<details><summary> <b>Expand</b> </summary>
|
36 |
-
|
37 |
-
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
|
38 |
-
|
39 |
-
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
|
40 |
-
|
41 |
-
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
|
42 |
-
|
43 |
-
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
|
44 |
-
|
45 |
-
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
|
46 |
-
|
47 |
-
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
|
48 |
-
|
49 |
-
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
|
50 |
-
|
51 |
-
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
|
52 |
-
|
53 |
-
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
|
54 |
-
|
55 |
-
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
|
56 |
-
|
57 |
-
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
|
58 |
-
|
59 |
-
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
|
60 |
-
|
61 |
-
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
|
62 |
-
|
63 |
-
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
|
64 |
-
|
65 |
-
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
|
66 |
-
|
67 |
-
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
|
68 |
-
|
69 |
-
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
|
70 |
-
|
71 |
-
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
|
72 |
-
|
73 |
-
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
|
74 |
-
|
75 |
-
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
|
76 |
-
|
77 |
-
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
|
78 |
-
|
79 |
-
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
|
80 |
-
|
81 |
-
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
|
82 |
-
|
83 |
-
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
|
84 |
-
|
85 |
-
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
|
86 |
-
|
87 |
-
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
|
88 |
-
|
89 |
-
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
|
90 |
-
|
91 |
-
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
|
92 |
-
|
93 |
-
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
|
94 |
-
|
95 |
-
</details>
|
96 |
-
|
97 |
-
|
98 |
-
## Installation
|
99 |
-
|
100 |
-
Docker environment (recommended)
|
101 |
-
<details><summary> <b>Expand</b> </summary>
|
102 |
-
|
103 |
-
``` shell
|
104 |
-
# create the docker container, you can change the share memory size if you have more.
|
105 |
-
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
|
106 |
-
|
107 |
-
# apt install required packages
|
108 |
-
apt update
|
109 |
-
apt install -y zip htop screen libgl1-mesa-glx
|
110 |
-
|
111 |
-
# pip install required packages
|
112 |
-
pip install seaborn thop
|
113 |
-
|
114 |
-
# go to code folder
|
115 |
-
cd /yolov9
|
116 |
-
```
|
117 |
-
|
118 |
-
</details>
|
119 |
-
|
120 |
-
|
121 |
-
## Evaluation
|
122 |
-
|
123 |
-
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
|
124 |
-
|
125 |
-
``` shell
|
126 |
-
# evaluate converted yolov9 models
|
127 |
-
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
|
128 |
-
|
129 |
-
# evaluate yolov9 models
|
130 |
-
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
|
131 |
-
|
132 |
-
# evaluate gelan models
|
133 |
-
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
|
134 |
-
```
|
135 |
-
|
136 |
-
You will get the results:
|
137 |
-
|
138 |
-
```
|
139 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
|
140 |
-
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
|
141 |
-
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
|
142 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
|
143 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
|
144 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
|
145 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
|
146 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
|
147 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
|
148 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
|
149 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
|
150 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
|
151 |
-
```
|
152 |
-
|
153 |
-
|
154 |
-
## Training
|
155 |
-
|
156 |
-
Data preparation
|
157 |
-
|
158 |
-
``` shell
|
159 |
-
bash scripts/get_coco.sh
|
160 |
-
```
|
161 |
-
|
162 |
-
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
|
163 |
-
|
164 |
-
Single GPU training
|
165 |
-
|
166 |
-
``` shell
|
167 |
-
# train yolov9 models
|
168 |
-
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
169 |
-
|
170 |
-
# train gelan models
|
171 |
-
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
172 |
-
```
|
173 |
-
|
174 |
-
Multiple GPU training
|
175 |
-
|
176 |
-
``` shell
|
177 |
-
# train yolov9 models
|
178 |
-
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
179 |
-
|
180 |
-
# train gelan models
|
181 |
-
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
182 |
-
```
|
183 |
-
|
184 |
-
|
185 |
-
## Re-parameterization
|
186 |
-
|
187 |
-
See [reparameterization.ipynb](https://github.com/WongKinYiu/yolov9/blob/main/tools/reparameterization.ipynb).
|
188 |
-
|
189 |
-
|
190 |
-
## Inference
|
191 |
-
|
192 |
-
<div align="center">
|
193 |
-
<a href="./">
|
194 |
-
<img src="./figure/horses_prediction.jpg" width="49%"/>
|
195 |
-
</a>
|
196 |
-
</div>
|
197 |
-
|
198 |
-
``` shell
|
199 |
-
# inference converted yolov9 models
|
200 |
-
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect
|
201 |
-
|
202 |
-
# inference yolov9 models
|
203 |
-
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect
|
204 |
-
|
205 |
-
# inference gelan models
|
206 |
-
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect
|
207 |
-
```
|
208 |
-
|
209 |
-
|
210 |
-
## Citation
|
211 |
-
|
212 |
-
```
|
213 |
-
@article{wang2024yolov9,
|
214 |
-
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
|
215 |
-
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
|
216 |
-
booktitle={arXiv preprint arXiv:2402.13616},
|
217 |
-
year={2024}
|
218 |
-
}
|
219 |
-
```
|
220 |
-
|
221 |
-
```
|
222 |
-
@article{chang2023yolor,
|
223 |
-
title={{YOLOR}-Based Multi-Task Learning},
|
224 |
-
author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark},
|
225 |
-
journal={arXiv preprint arXiv:2309.16921},
|
226 |
-
year={2023}
|
227 |
-
}
|
228 |
-
```
|
229 |
-
|
230 |
-
|
231 |
-
## Teaser
|
232 |
-
|
233 |
-
Parts of code of [YOLOR-Based Multi-Task Learning](https://arxiv.org/abs/2309.16921) are released in the repository.
|
234 |
-
|
235 |
-
<div align="center">
|
236 |
-
<a href="./">
|
237 |
-
<img src="./figure/multitask.png" width="99%"/>
|
238 |
-
</a>
|
239 |
-
</div>
|
240 |
-
|
241 |
-
#### Object Detection
|
242 |
-
|
243 |
-
[`gelan-c-det.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt)
|
244 |
-
|
245 |
-
`object detection`
|
246 |
-
|
247 |
-
``` shell
|
248 |
-
# coco/labels/{split}/*.txt
|
249 |
-
# bbox or polygon (1 instance 1 line)
|
250 |
-
python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10
|
251 |
-
```
|
252 |
-
|
253 |
-
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> |
|
254 |
-
| :-- | :-: | :-: | :-: | :-: |
|
255 |
-
| [**GELAN-C-DET**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt) | 640 | 25.3M | 102.1G |**52.3%** |
|
256 |
-
| [**YOLOv9-C-DET**]() | 640 | 25.3M | 102.1G | **53.0%** |
|
257 |
-
|
258 |
-
#### Instance Segmentation
|
259 |
-
|
260 |
-
[`gelan-c-seg.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt)
|
261 |
-
|
262 |
-
`object detection` `instance segmentation`
|
263 |
-
|
264 |
-
``` shell
|
265 |
-
# coco/labels/{split}/*.txt
|
266 |
-
# polygon (1 instance 1 line)
|
267 |
-
python segment/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
268 |
-
```
|
269 |
-
|
270 |
-
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> |
|
271 |
-
| :-- | :-: | :-: | :-: | :-: | :-: |
|
272 |
-
| [**GELAN-C-SEG**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt) | 640 | 27.4M | 144.6G | **52.3%** | **42.4%** |
|
273 |
-
| [**YOLOv9-C-SEG**]() | 640 | 27.4M | 145.5G | **53.3%** | **43.5%** |
|
274 |
-
|
275 |
-
#### Panoptic Segmentation
|
276 |
-
|
277 |
-
[`gelan-c-pan.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt)
|
278 |
-
|
279 |
-
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation`
|
280 |
-
|
281 |
-
``` shell
|
282 |
-
# coco/labels/{split}/*.txt
|
283 |
-
# polygon (1 instance 1 line)
|
284 |
-
# coco/stuff/{split}/*.txt
|
285 |
-
# polygon (1 semantic 1 line)
|
286 |
-
python panoptic/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
287 |
-
```
|
288 |
-
|
289 |
-
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> |
|
290 |
-
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
291 |
-
| [**GELAN-C-PAN**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt) | 640 | 27.6M | 146.7G | **52.6%** | **42.5%** | **39.0%/48.3%** | **52.7%** | **39.4%** |
|
292 |
-
| [**YOLOv9-C-PAN**]() | 640 | 28.8M | 187.0G | **52.7%** | **43.0%** | **39.8%/-** | **52.2%** | **40.5%** |
|
293 |
-
|
294 |
-
#### Image Captioning (not yet released)
|
295 |
-
|
296 |
-
<!--[`gelan-c-cap.pt`]()-->
|
297 |
-
|
298 |
-
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation` `image captioning`
|
299 |
-
|
300 |
-
``` shell
|
301 |
-
# coco/labels/{split}/*.txt
|
302 |
-
# polygon (1 instance 1 line)
|
303 |
-
# coco/stuff/{split}/*.txt
|
304 |
-
# polygon (1 semantic 1 line)
|
305 |
-
# coco/annotations/*.json
|
306 |
-
# json (1 split 1 file)
|
307 |
-
python caption/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
308 |
-
```
|
309 |
-
|
310 |
-
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> | BLEU@4<sup>caption</sup> | CIDEr<sup>caption</sup> |
|
311 |
-
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
312 |
-
| [**GELAN-C-CAP**]() | 640 | 47.5M | - | **51.9%** | **42.6%** | **42.5%/-** | **56.5%** | **41.7%** | **38.8** | **122.3** |
|
313 |
-
| [**YOLOv9-C-CAP**]() | 640 | 47.5M | - | **52.1%** | **42.6%** | **43.0%/-** | **56.4%** | **42.1%** | **39.1** | **122.0** |
|
314 |
-
<!--| [**YOLOR-MT**]() | 640 | 79.3M | - | **51.0%** | **41.7%** | **-/49.6%** | **55.9%** | **40.5%** | **35.7** | **112.7** |-->
|
315 |
-
|
316 |
-
|
317 |
-
## Acknowledgements
|
318 |
-
|
319 |
-
<details><summary> <b>Expand</b> </summary>
|
320 |
-
|
321 |
-
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
|
322 |
-
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
|
323 |
-
* [https://github.com/WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7)
|
324 |
-
* [https://github.com/VDIGPKU/DynamicDet](https://github.com/VDIGPKU/DynamicDet)
|
325 |
-
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
|
326 |
-
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|
327 |
-
* [https://github.com/meituan/YOLOv6](https://github.com/meituan/YOLOv6)
|
328 |
-
|
329 |
-
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|